Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Early Palaeozoic
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This contribution summarizes selected results of the “Palaeozoic Accretion of Poland” Project. Emphasis is placed on geochronological, geochemical and palaeomagnetic constraints on the Late Neoproterozoic to Early Palaeozoic development of the Trans-European Suture Zone (TESZ). During the Late Neoproterozoic break-up of Rodinia, a major rift developed in the area of the future TESZ along which Baltica was separated from peri-Gondwana and Laurentia, resulting in opening of the Tornquist Ocean and development of the southwestern Baltica passive margin. This was paralleled by the development of the Cadomian orogenic system along the margin of Gondwana and the eastern and southern margins of Baltica. Some tectonic units involved in the TESZ, such as the Brunovistulian Terrane and the Małopolska Massif characterized by Cadomian basement, were derived fromthe internal and external parts of the Cadomian Orogen, presumably somewhere at the SE or SW corners of Baltica. Determination of areas where these terrains were originally located depends strongly on the Ediacaran plate model that is adopted for Baltica. The Małopolska Massif was reaccreted to Baltica, presumably due to latest Ediacaran strike-slip tectonics, during the late Middle to Late Cambrian, causing at that time an interruption of its passive margin subsidence pattern and minor erosion. During Late Ordovician to Silurian times, the Caledonian collision of Gondwana-derived East Avalonia Terrane with Baltica gave rise to the development of a foredeep basin along the southwestern margin of Baltica. The proximal part of this foredeep corresponds to the Pomeranian region to the Koszalin-Chojnice Zone, and its distal parts to the Baltic Basin, both of which developed on Baltica basement. During Ordovician and Silurian times clastics were shed into the Koszalin-Chojnice Zone and the Baltic Basin from the evolving Caledonian orogenic wedge, consisting of a subduction-related volcanic arc, obducted ophiolites and accretionary prism, as well as crustal units that were detached from basement of Baltica and Avalonia. The Brunovistulian Terrane was accreted to theMałopolskaMassif at the turn from the Silurian to the Devonian. Proximal terranes, such as the Pomerania and Łysogóry units remained after Late Neoproterozoic rifting in a position close to the relatively mobile SW margins of Baltica.
EN
Low- to medium-grade metabasites are the most abundant metaigneous rocks in the Early Palaeozoic metavolcanic (ąmetasedimentary) East Krkonoše (Karkonosze) Complex located at the Czech/Polish border in the central West Sudetes (NE Bohemian Massif). These mafic rocks are interpreted as metamorphosed equivalents of basic magmatites - both volcanics (lavas and pyroclastics) and subvolcanic intrusives. The correlation of lithostratigraphic units defined in the Czech (southern) and Polish (central and northern) parts of the East Krkonoše Complex is based on a comparison of the geochemical characteristics and petrography of the (1) The greenschists to greenstones (associated with abundant felsic metavolcanics) of the Czech East Krkonoše Complex, which are finely interfingered with low-grade metasediments, are correlated with the amphibolites forming small- to medium-sized bodies in medium-grade metasediments of the Polish East Karkonosze Complex. Both the low- and medium-grade metabasites are interpreted as comprising a range of metamorphosed tholeiitic, transitional and alkaline WPBs. (2) The largest mafic rock suite, which dominates the Polish part of the East Krkonoše Complex, has a dismembered promontory along the eastern margin of the East Krkonoše Complex Czech component. Most of these mafic rocks (blueschists, greenschists, greenstones and amphibolites) correspond to N- and E-MORBs. The above groups of rocks are broadly coeval and geochronologically overlap the Cambrian/Ordovician boundary. The similarity in magmatic ages and the diversity in geochemical features suggest that the East Krkonoše Complex metabasites are evidence for intracontinental rift development and the subsequent generation of incipient oceanic basin lithosphere in the NE Bohemian Massif during the Early Palaeozoic. Provided that the East Krkonoše Complex metabasites can be matched with similar rock suites in the West and Central European Variscides, their magmatic origin may be related to the rifting of northern Gondwana and large-scale break-up at the beginning of the Palaeozoic.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.