Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  EUREF
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The determination of the height in the vertical reference frame in force in Poland is based both on national regulations (Council of Ministers Regulation, 2012) and on the resolution adopted by the EUREF subcommittee in Tromsø (Resolution No. 5, EUREF Symposium, 2000). Currently, the PL-KRON86-NH vertical reference frame is in use in Poland – a normal height system referred to a quasi-geoid of the average level of the Baltic Sea determined by the zero level of the mareograph in Kronstadt. According to the Regulation, by the end of 2019, Poland will adopt the PL-EVRF2007-NH vertical reference frame, i.e. a normal height system referred to the zero level of the mareograph in Amsterdam. The authors present a method of determining normal heights of seabed referred to the zero level of the mareograph in Amsterdam for coastal areas of the Baltic Sea. This method uses GNSS measurements, the EGM 2008 model and depth measuring methods typical for underwater mining.
EN
In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.
EN
Daily and weekly coordinates solutions of GNSS permanent stations operating within EPN network allows to track long-term changes of coordinates caused e.g. by the local and global movements of tectonic plates. They are therefore an excellent tool for testing stability and repeatability of stations position. The article presents an analysis of coordinates changes of selected reference stations based on weekly EPN solutions. In addition the author proposes parameters of approximating function by assuming an existence of periodic, annually repeatable trend. The author performed also an independent fitting function for two different periods of two ITRF frames of routine time analysis and reprocessing.
4
Content available remote Ciągłe przeliczanie
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.