Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  EMF method
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Although Ag-Pt system is crucial for several technological applications, investigations of the thermodynamic properties of this system are limited. In the present study, activity of silver at various temperatures in the platinum rich solid solution was measured by a solid electrochemical method and employing AgI as the solid electrolyte. The EMF was determined using a galvanic cell (–)|Ag|AgI|Ag – Pt alloy|C|Pt (+), which provided novel experimental data on thermodynamic properties of a Ag-Pt alloy. Activity, partial molar of Gibbs energy, enthalpy and entropy of silver in a solid solution containing 1 at % Ag between 573 and 673 K have been calculated. The results indicated that the activity of silver obtained in the present study shows a large positive deviation from the ideal Raoultian behavior. Microstructures of alloys with different compositions were also compared.
EN
Thermodynamic assessment of the phase stability of the solid solutions of superionic alloys of the Ag3SBr1-xClx (I) system in the concentration range 0 ≤ x ≤ 0.4 and temperature range 370–395 K was performed. Partial functions of silver in the alloys of solid solution were used as the thermodynamic parameters. The values of partial thermodynamic functions were obtained with the use of the electromotive force method. Potential-forming processes were performed in electrochemical cells. Linear dependence of the electromotive force of cells on temperature was used to calculate the partial thermodynamic functions of silver in the alloys. The serpentine-like shape of the thermodynamic functions in the concentration range 0–4 is an evidence of the metastable state of solid solution. The equilibrium phase state of the alloys is predicted to feature the formation of the intermediate phase Ag3SBr0.76Cl0.24, and the solubility gap of the solid solution ranges of Ag3SBr0.76Cl0.24 and Ag3SBr.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.