Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 30

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ECM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
1
EN
Many newer higher strength materials are being synthesized for variable automobile, aerospace and manufacturing applications in the present scenario. Since it is very difficult to cut such materials using conventional machining process, it is important to utilize unconventional machining process. In the present study, a detailed survey has been made to analyze the influence of various process parameters, effects of electrodes, optimization and electrolytes on performance measures in Electro chemical machining process. The effects of pulse related parameters on electrode materials, coating materials and its thickness on material removal, overcut and surface topography were investigated under different perspectives such materials, electrolyte and machining parameters. From the detailed literatures, it has been inferred that still lot of research works have been required to find the suitable electrolytes and their combination during the machining process. It has also been found that the performance measures of the machining process can be improved by adopting different and suitable optimization algorithms.
EN
In Electrochemical Machining (ECM), material is removed “atom by atom” as the result of an electrochemical dissolution process. Under optimal parameters for this process the tool has no wear and the quality of the surface layer, metal removal rate and accuracy are satisfactory for special application in the automotive or aerospace industries. However, ECM has also some limitations connected with electrolyte flow through interelectrode gap, machined surface passivation phenomena or heat and hydrogen generation, quick temperature increase and high probability of electrical discharges and difficulties with machining composite materials. In Electrodischarge Machining (EDM), material from workpiece is removed during electrical discharges occurring in the machining area as a result of material melting, evaporating and sometimes breaking as a result of high internal stresses. This way of material removal introduces significant changes in surface layer properties and reaching a satisfactory surface layer roughness and high accuracy is possible only for a rather small metal removal rate. In order to overcome the above-mentioned problems, some hybrid abrasive ECM and EDM processes have been worked out and successfully applied in industry. Here, some results from the authors’ own research, industrial applications and data from the literature are presented.
PL
W obróbce elektrochemicznej (ECM) materiał usuwany jest „atom po atomie” w wyniku procesu roztwarzania elektrochemicznego. W procesie tym przy zastosowaniu optymalnych parametrów nie występuje zużycie narzędzia, a jakość warstwy wierzchniej, prędkość usuwania materiału oraz dokładność są zadowalające dla specjalnych zastosowań w przemyśle samochodowym, lotniczym i kosmicznym. Obróbka ECM posiada też pewne ograniczenia związane z przepływem elektrolitu przez szczelinę międzyelektrodową, zjawiskami pasywacji obrabianej powierzchni, generowaniem ciepła oraz wodoru, szybkim wzrostem temperatury i dużym prawdopodobieństwem wyładowań elektrycznych oraz trudnościami w obróbce materiałów kompozytowych. W obróbce elektroerozyjnej (EDM) ubytek materiału z przedmiotu obrabianego realizowany jest podczas wyładowań elektrycznych występujących w obszarze obróbki w wyniku topienia, parowania, a czasem pękania materiału w wyniku dużych naprężeń wewnętrznych. Taki sposób usuwania materiału wprowadza znaczące zmiany właściwości warstwy wierzchniej, a osiągnięcie zadowalającej chropowatości warstwy wierzchniej i wysokiej dokładności obróbki jest możliwe przy stosunkowo niewielkiej prędkości usuwania materiału. W celu przezwyciężenia powyższych problemów, opracowano i z powodzeniem zastosowano w przemyśle hybrydowe procesy ścierne ECM oraz EDM. Poniżej przedstawiono wybrane wyniki badań własnych autorów, jak również zastosowania przemysłowe oraz dane literaturowe.
3
Content available remote A compact UWB FSS single layer with stopband properties for shielding applications
EN
A compact and simple structure of ultra-wideband (UWB) frequency selective surface (FSS) single layer was formed to obtain stopband characteristics in this study. The proposed FSS is made of a modified square loop (MSL) structure with an electrical size of 0.15λ0 ×0.15λ0 × 0.041λ0 and is printed on a single side of the dielectric FR4 substrate. To determine the FSS unit cell structure’s behaviour, an equivalent circuit model (ECM) was introduced. Based on the observations, the designed FSS achieved a bandwidth of 10GHz (2.6-12.6 GHz) with -10dB of return loss performance. Hence, the proposed FSS was identified to contribute towards stable angular stability for transverse electric (TE) and transverse magnetic (TM) polarisations from 0° to 45°. Overall, the simulated results were in high-grade harmony compared to the measured results.
PL
Przedstawiono prostą kompaktową antenę szerpokopasmową z możliwością tworzenia pasma zaporowego. Antena ma modyfikowana pętlę kwadratowa o elektrycznym rozmiarze 0.15λ0 ×0.15λ0 × 0.041λ0 I jest drukwana na jednej stronie dielektryka FR4. Na podstawie badań określono pasmo anteny na 2.6 – 12.6 GHz.
EN
Semi-structural data tend to be problematic due to the sparsity of their attributes and due to the fact that, regardless of their type, they are immensely diverse. This means that data storage is a challenge, especially when the data contained within a relational database – often a strict requirement defined in advance. In this paper, we present a thoroughly described concept of a repository that is capable of storing and processing semi-structural data. Based on this concept, we establish a database model comprising the architecture and the tools needed to search the data and build relevant processors. The processor described may assign roles and dispatch tasks between the users. We demonstrate how the capacities of this repository are capable of overcoming current limitations by creating a system for facilitated digitization of scientific resources. In addition, we show that the repository in question is suitable for general use, and, as such, may be adapted to any domains in which semi-structural data are processed, without any additional work required.
EN
Plate-like structures with attached piezo-patch elements are widely used in marine, aerospace and civil infrastructure applications to power small devices with low power demand or used for monitoring of vibration structures. In order to assess the feasibility of an energy harvesting system to generate power output from a harvester, an accurate electromechanical model of the piezo-patch harvester attached to a 2D structure in modal coordinates is required. Taking into account this fact, this study is focused on the analysis of the piezoharvester orientations on the SFSF (Simply Supported-Free-Simply Supported-Free) plate undergoing forced dynamic excitation. The results obtained from the numerical analysis of a smart structure led to determining quasi-optimal piezo-harvester location on the structure, and next, to determining a multi-mode representation of the equivalent circuit model. The experimental set-up carried out on the lab stand properly verified the parameters of the ECM model. Finally, the proposed approach can be used for the structural health monitoring of vibration of some 2D mechanical structures like the front wall of a dishwasher.
7
Content available Extending the Scope of ECM Certification
EN
The Commission Regulation (EU) No 445/2011 introduced requirements on certification system for Entities in Charge of Maintenance (ECM). It contains requirements regarding the need to create and, more importantly, verify by the certifying body of the Maintenance Management System (MMS). It assumes that only Entities in Charge of Maintenance for freight wagons will be subject to certification. With the development of legislation on the safety of rail transport the extension of ECM certification began. The article presents the proposal of the European Union Agency for Railways to extend the scope of Commission Regulation (EU) No. 445/2011 and discusses the most important changes.
PL
Przedstawiono wyniki przeprowadzonych prac eksperymentalnych dotyczących weryfikacji opracowanej, oryginalnej metody wieloosiowego kształtowania powierzchni techniką ECM. Wykonano pomiary struktury geometrycznej powierzchni. Scharakteryzowano powierzchnię obrobioną, uzyskaną po wprowadzeniu zmian w stanowisku badawczym. Wskazano na możliwość stosowania opisanego sposobu kształtowania powierzchni z zastosowaniem wieloosiowej obróbki ECM.
EN
The paper presents the original research results and analyzes, regarding the developed stand and multi-dimensional surface shaping using ECM technique. Surface roughness and 3D geometric surface structure measurements were made. As a result of unsatisfactory treatment effects, changes in the flow control system and electrolyte pressure were made and described. The workpiece surface obtained after construction change was characterized. The possibility of applying the described method of surface forming using multi-axis ECM treatment was indicated.
EN
Recent developments in automation and technology have revolutionized the way products are made. It is directly seen in the evolution of part miniaturization in the sectors such as aerospace, electronics, biomedicine and medical implants. Micromachining is a promising technology to fulfill the need of miniaturization. A review has been done on the micromachining processes such as micro electric discharge machining (micro-EDM) and wire EDM (WEDM), micro electrochemical machining (micro-ECM). Recent literature were studied and categorized in terms of materials, process parameters, performances, product manufactured, and miniature product generation. Starting with brief introduction to micromachining, classifications and applications, technical aspects of discussions from the literature have been presented on key factors such as parameters and the response variables. Important aspects of recast layer, heat effected zone, micro-hardness, micro cracks, residual stress, etc., have been given. A special focus is given to the status of the research on microgear manufacturing. Comparison has been made between other conventional process suitable for micro-gear manufacturing and WEDM. The miniature gear machined by WEDM shows the defect-free microstructure, better surface finish, thin recast layer and improved gear quality parameters such as profile and pitch. Finally, the research gaps and future research directions have been presented.
EN
The presence of three dimensional support is indispensable condition for successful regeneration of the tissue. In the absence of natural scaffold, or absence of its artificial substitute, regeneration is not possible. The advantage of natural building blocks to create new scaffolds results from the requirements of the materials structures used for tissue regeneration: biocompatibility, biodegradability, lack of cytotoxicity and desirable mechanical properties. Application of these building blocks for the preparation of three dimensional materials should ensure completely biocompatibility of the temporary extracellular matrix equivalent, thus offering construct resembling a natural milieu for the cells and finally regeneration of tissues. These include framework with elements stimulating adhesion of in vitro grown cells, growth factors, hormones and vitamins offered as a completed ingredients in the commercially available culture media. 3D frameworks applied for cell growing should facilitate formation of required tissue shape and size as well as appropriate functioning of the cells. The key factor for the successful regeneration of tissues is the function of the scaffold determining the environment for growing cells, directing proliferation and regulating differentiation processes. The basic feature of the cellular scaffold, determining its functioning is porosity. Pore diameter and their abundance consists a critical factor for penetration of cells into the interior of the implant and finally for successful regeneration of damaged tissue. The progress of tissue regeneration in vitro depends on the presence of cytokines and growth factors, which are controlling cell differentiation process. Nowadays neither of implant material offered on the market has a property comparable to the natural tissue. However, there are many reports presenting preliminary experiments conducted towards attaining novel supports for regenerative medicine derived from peptides and formed by their self-organization. The most advanced of them are known under trade name PuraMatrix, which recently were applied for the regeneration of soft tissues. However, due to tendency of this materials for hydrogels formation, characteristic for them are disadvantageous mechanical properties. The alternative approach based on application of native ECM proteins was also taken into consideration. The weak points of this materials are the susceptibility of proteins towards proteolytic enzymes and theirs immunogenic properties. The diversity of peptide modules give the opportunity to design and synthesize a variety of biomaterials that mimic the structural complexity of the natural ECM.
11
Content available remote Obróbka elektrochemiczna – stan badań i kierunki rozwoju
PL
Obróbkę elektrochemiczną (ECM) można zastosować do wydajnego wytwarzania elementów ze specjalnych materiałów przewodzących prąd elektryczny, które są trudne lub niemożliwe do kształtowania metodami konwencjonalnymi. W obróbce elektrochemicznej obrabiany przedmiot jest anodą, a materiał jest usuwany – atom po atomie – w wyniku reakcji elektrochemicznych bez użycia sił mechanicznych. Taki sposób usuwania materiału pozwala na uzyskanie warstwy wierzchniej o niskiej chropowatości. Bardzo ważną zaletą obróbki elektrochemicznej jest brak zużycia narzędzia (elektrody roboczej – katody), ponieważ reakcją ekwiwalentną do usuwania materiału z przedmiotu obrabianego jest wydzielanie się wodoru na powierzchni katody, który usuwany jest przez elektrolit przepływający przez obszar obróbki. Z uwagi na te zalety obróbka elektrochemiczna jest stosunkowo szeroko stosowana w przemyśle kosmicznym, lotniczym, samochodowym oraz elektromechanicznym. Prowadzone są prace badawcze stymulujące rozwój ECM.
EN
Electrochemical machining process (ECM) can be applied for efficient shaping advanced materials conducting electrical current, which are difficult or impossible for machining using conventional methods. In electrochemical machining, the workpiece is an anode and material is removed as a result of electrochemical reactions “atom by atom” without mechanical forces. This mechanism of material removal make it possible to obtain high quality of machined surface layer with uniform properties. The very important advantage of ECM process is also the fact that there is not a tool wear (working electrode – cathode), because the equivalent reaction to anodic dissolution is hydrogen generation on cathode surface and hydrogen can be easily removed from, the inter-electrode gap by electrolyte flow. Because of this advantages, the ECM process is widely applied in space, aircraft, car and electromechanical industry and research stimulating ECM development are carried out.
EN
The variety of possible construction solutions of machinery and technological equipment and research related to these solutions require knowledge of materials engineering, mechanics, strength of materials, electronics and mechatronics, the basics of machine construction and machine technology. It is impossible to cover such an extensive range of required information in just one publication. Therefore, the authors of this article concentrated only on selected examples of research, construction solutions, and technological recommendations that have found application in industrial environments. Topics presented in the article include the following: - A research and design solution of a specialized drill for making holes in the diameter range of 4 to mm to a depth of 1600 mm; - Shaping elements by precision machining; - A research workstation for precision machining of microelements with the use of unconventional technologies - laser machining and Electrical Discharge Machining (EDM); and, The influence of machining conditions on the state of residual stresses in the surface layer of the workpiece. The choice of the above examples shows how wide is the area of problems which can be presented in the journal “Journal of Machine Construction and Maintenance”.
PL
Różnorodność rozwiązań konstrukcyjnych urządzeń i wyposażenia technicznego oraz prowadzonych badań w zakresie tych rozwiązań wymaga wiedzy z obszaru inżynierii materiałowej, mechaniki, wytrzymałości materiałów, elektroniki i mechatroniki, podstaw budowy maszyn oraz technologii maszyn. Nie jest możliwe, aby w jednej publikacji objąć tak szeroki zakres merytoryczny, dlatego też, autorzy artykułu skoncentrowali się na wybranych przykładach badań, rozwiązań konstrukcyjnych oraz zaleceniach technologicznych, które realizowano w warunkach przemysłowych. Zaprezentowana w artykule tematyka obejmuje: Badania oraz rozwiązania projektowe specjalizowanego wiertła do wiercenia otworów o średnicy od f4 do φ32 mm do głębokości 160 mm; Kształtowanie elementów w procesie obróbki precyzyjnej; Stanowisko badawcze do obróbki precyzyjnej mikroelementów z wykorzystaniem niekonwencjonalnych technologii - obróbki laserowej i obróbki elektroerozyjnej (EDM); Wpływ warunków obróbki skrawaniem na naprężenia własne w warstwie wierzchniej próbki. Wybór powyższych przykładów pokazuje obszerność problematyki, która może być zaprezentowana w czasopiśmie “Journal of Machine Construction and Maintenance”.
13
Content available remote Innowacyjne metody obróbki ECM
PL
Artykuł zawiera ostatnie informacje z zakresu obróbki elektrochemicznej (ECM) zebrane z doniesień naukowych ośrodków interesujących się tymi zagadnieniami oraz doniesień z zakładów produkujących obrabiarki elektrochemiczne. Główne zagadnienia poruszane z tego zakresu, to wytwarzanie monolitycznych tarcz turbin silników lotniczych (blisk) z łopatkami, a także technologia usuwania zadziorów metodą ECM.
EN
The paper includes recent information on the Electrochemical Machining (ECM) which was accumulated basing on the scientific newsletters issued by the research centers interested in such problems and the newsletters of electrochemical machine manufacturers. The major problems which were described are concentrated on the monolithic aircraft engine turbine wheels (blisks) with the integrated blades and on the method of the ECM deburring.
EN
We present analysis of security of the most known assymetric algorythm RSA and its modern version MultiPrime RSA. We focused on more precisious estimations of time complexity of two factorization algorithms: Elliptic Curve Method and General Number Field Sieve. Additionally for the MultiPrime RSA algorithm we computed the maximal number of prime factors for given modulus length which does not decrease the security level.
PL
W artykule przedstawiamy analizę bezpieczeństwa powszechnie znanego algorytmu klucza publicznego RSA oraz jego następcy MultiPrime RSA. Skupiliśmy się na dokładniejszym wyznaczeniu oczekiwanego czasu faktoryzacji dużych liczb za pomocą dwóch algorytmów: Metody Krzywych Eliptycznych (ECM) i Ogólnego Sita Ciała Liczbowego (GNFS). Dodatkowo dla algorytmu MultiPrime RSA została obliczona maksymalna liczba czynników pierwszych dla danej długości modułu, która nie powoduje zmniejszenia bezpieczeństwa.
PL
W obróbce elektrochemicznej (ECM) przedmiot obrabiany podłączony jest do dodatniego bieguna źródła prądu elektrycznego, a narządzie-katoda do bieguna ujemnego. W szczelinie miedzy elektrodami płynie elektrolit (prędkość przepływu od kilku do kilkunastu m/s). Materiał z przedmiotu obrabianego usuwany jest w drodze procesów elektrochemicznych po przyłożeniu do elektrod napięcia elektrycznego. Dokładność w obróbce elektrochemicznej uzależniona jest od kształtu elektrody roboczej i rozkładu grubości szczeliny międzyelektrodowej między elektrodą roboczą i przedmiotem obrabianym. W klasycznej obróbce elektrochemicznej prądem ciągłym prowadzenie procesu przy szczelinach poniżej 0,2 mm jest bardzo utrudnione. Wynika to z wielu czynników, a w szczególności z: — nagrzewania się elektrolitu w wyniku przepływu prądu elektrycznego przez ośrodek, — wydzielania sic; fazy gazowej w elektrolicie, — powstawania produktów stałych w elektrolicie, najczęściej wodorotlenków metali, — niskich prędkości przepływu elektrolitu. Z powyższych względów realizacja procesu przy szczelinach poniżej 0,2 mm jest możliwa tylko w bardzo krótkim czasie i wymusza zastąpienie źródła prądu ciągłego źródłem prądu impulsowego (PECM). Zastosowanie prądu impulsowego powoduje, że proces roztwarzania elektrochemicznego znacznie różni się od procesu prądem ciągłym. W pracy opisano zagadnienia związane z obróbką elektrochemiczną impulsową i jej celem było poznanie zjawisk zachodzących w szczelinie międzyelektrodowej, budowa modeli matematycznych do symulacji komputerowej procesu, wyznaczenie podstawowych charakterystyk PECM oraz wyznaczenie granicznych parametrów procesu ze względu na możliwość wystąpienia stanów krytycznych. W rozdziałach 1 i 2 tej monografii przedstawiono charakterystykę procesu roztwarzania elektrochemicznego impulsowego (z odniesieniem do procesów prądem ciągłym), a w szczególności opisano zmiany kształtu powierzchni obrabianej, wpływu hydrodynamiki, pola elektrycznego i zmiany przewodności elektrycznej elektrolitu (wynikające z nagrzewania się elektrolitu i powstawania fazy gazowej) na przebieg procesu. Omówiono korzyści wynikające z zastosowania PECM (zwiększenie dokładności poprzez stosowanie małych szczelin i uproszczenie projektowania elektrody roboczej) oraz jej wady (mniejsza wydajność w stosunku do ECM). Analizę procesu i kierunek badań nad PECM wytyczono na podstawie prac własnych autora, jak i wiedzy dostępnej w literaturze publikowanej W kraju i za granicą, a którą omówiono w rozdziale 3. Liczba publikacji dotyczących zagadnień obróbki elektrochemicznej impulsowej jest duża, ale rzadko kiedy ujmuje całościowo stan wiedzy, co jest zrozumiałe ze względu na złożoność procesów w niej zachodzących. Celem pracy było m. in. uporządkowanie tej wiedzy i stworzenia pozycji traktującej proces całościowo. Ze względu na brak możliwości fizycznej obserwacji i rejestracji procesów zachodzących W szczelinie międzyelektrodowej, jedną z najskuteczniejszych metod wyznaczania warunków panujących w szczelinie międzyelektrodowej jest modelowanie procesu (rozdziały 4-9). W modelowaniu PECM (modele fizyczne i matematyczne) najczęściej zakłada się, że czynnikami wpływającymi najbardziej na zmianę konduktywności elektrolitu są: nagrzewanie się elektrolitu i wydzielanie się fazy gazowej. Wydzielanie się fazy gazowej w niektórych przypadkach może być pominięte lub ujęte w różnorodny sposób. Przedstawione w pracy modele, opisujące zjawiska w szczelinie międzyelektrodowej, podzielono na: bez wydzielania się fazy gazowej (modele termiczne), modele warstwowe i homogeniczne. Wymienione modele zaprezentowane zostały w różnych wariantach obróbki: bez przepływu i z przepływem elektrolitu, bez wymiany i z wymianą ciepła przez elektrody. Dla wybranych modeli matematycznych zbudowano modele numeryczne i algorytmy (rozdział 10). Na ich podstawie zostało wykonane oprogramowanie symulacyjne procesów PECM (rozdział 11). Pozwala ono na wyznaczenie podstawowych charakterystyk procesu, np.: zależności prędkości roztwarzania od grubości szczeliny międzyelektrodowej w czasie pojedynczego impulsu napięcia, jak i ciągu impulsów (pakietów impulsu), wyznaczenie stanów krytycznych procesu, zbadanie możliwości osiągnięcia stanu quasi-ustalonego, wyznaczenie grubości szczeliny międzyelektrodowej W chwili zakończenia procesu - istotnie ważne ze względu na projektowanie kształtu elektrody-narzędzia. Oprogramowanie pozwala na przeprowadzenie symulacji impulsowego kształtowania elektrochemicznego powierzchni krzywoliniowych. W rozdziale 12 przedstawiono warunki i wybrane wyniki badań doświadczalnych. Badania ukierunkowane były głównie na weryfikację modeli matematycznych, jak i na przyszłe zastosowania przemysłowe. Przeprowadzona weryfikacja doświadczalna pozwala wnioskować o przydatności opracowanych modeli matematycznych i oprogramowania komputerowego symulacji PECM do zastosowań praktycznych. W ostatnim rozdziale przedstawiono wnioski ogólne dotyczące zawartych w tej pracy badań. Obróbka elektrochemiczna impulsowa pozwala na kilkukrotne zwiększenie dokładności w stosunku do obróbki prądem ciągłym, pozwala na projektowanie elektrody jako ekwidystanty powierzchni obrabianej, co znacznie upraszcza proces przygotowania technologii i znacznie redukuje jego koszty.
EN
Electrochemical machining (ECM and Pulse ECM) is an important manufacturing technology in machining difficult-to-cut materials and in shaping complicated contours and profiles with high material removal rate without tool wear and without inducing residual stress. From theory and practice of ECM it follows that gap size during ECM should be as small as possible for enhancing shape accuracy and simplifying tool design, and reduction non-uniformity of electrical conductivity and other physical conditions are needed for a more stable gap state. These requirements limit ECM with continuous working voltage performance limited. The minimum practical tool gap size, which may be used, however, is constrained by the onset of unwanted electrical discharges. All these constraints of continuous ECM can be eliminated and the requirements of machining accuracy can be achieved by application of pulse working voltage in pulse electrochemical shaping and smoothing. In the pulse electrochemical machining (PECM) process, a pulse generator is used to supply working voltage pulses across two electrodes, typically in the form of pulse strings consisting of single pulses or grouped pulses. The anodic electrochemical dissolution occurs during the short pulse on-times, each ranging from 0,1 ms to 5 ms. Dissolution products (sludge, gas bubbles and heat) are fiushed away from the inter-electrode gap by the flowing electrolyte during the pulse otf-times between two pulses or two groups of pulses. To intensify the electrolyte fiushing, the tool is retracted from the workpiece to enlarge the gap during the pulse off-times. Gap checking and tool repositioning can also be conducted during these pulse pauses to establish a given gap size before the arrival of the next pulse, leading to a significant reduction in the indeterminacy of the gap and, hence, of the shaping accuracy. With PECM, it is possible to produce complex shapes, such as dies, turbine blades, and precision electronic components, with accuracy within 0,02-0,10 mm. In electrochemical machining, a smaller gap yields better control on dimensional accuracybut the gap size is limited by many factors such as electrolyte boiling point and cleanness of electrolyte. The disturbance from electrolyte flow and tool repositioning errors may also cause process instability when the gap is small. It depends on pressure distribution in the gap during pulse cycle. Material processing by pulse electrochemical machining (PECM) is a complicated process with specific characteristic features. Systematization and substantiation of anodic dissolution in the process of pulse electrochemical machining and the identification of interactions between diiferent phenomena during this process are important for the achievement of maximum accuracy, machining quality and productivity at various technological parameters. Accuracy of electrochemical machining is dependent on the tool electrode shape as well as on width distribution of the gap between the tool electrode and the machined object. In the conventional electrochemical machining, using direct current, the process becomes difficult to continue for the gap width smaller than 0,2 mm. lt results from multiple factors and particularly from: - electrolyte warming during the electric current fiow through the working medium, - gaseous phase separation in the electrolyte, - solid products appearance on the electrolyte, usually metal hydroxides, - low electrolyte flow velocity. The operation with the gap width lower than 0,2 mm is possible only at a very short time span. The replacement of the direct current source by the pulse current source (PECM) is one of the ways to enable operation with very thin gaps so that the accuracy of electrochemical machining is higher (it can be accomplished without the necessity of speeding up the electrolyte flow, which may result in hydrodynamic fiaws of the machined surfaces). It should be noted that the tool elcctrode shape is strictly connected with the machining parameters and with distributions of the above mentioned quantities both along and across the interelectrode gap. Determining the tool elcctrode shape and the respective PECM parameters is very difficult, sometimes because of its very size (in the case of micromachining it can be a few microns). As there is no chance for physical observation and monitoring of the gap phenomena, process modeling (mathematical physical and numerical with computer simulatíon) tums out to be one of the most effective methods for determining the condition of the inter-elcctrode gap. It is usually assumed in PECM modeling that the electrolyte warming and the gaseous phase separation are the most influential factors for the electrolyte conductivity variation. The electrolyte warming cannot be disregarded because it is the in-born process part. The models describing phenomena taking place in the inter-elcctrode gap can be divided into three categories: ones omitting the gaseous phase (thermal-based models), layer-based models and hornogeneous models. Numerical models have been developed for the categories mentioned above, describing different machining variants. Simulation software for the PECM process has been then elaborated as based on the developed numerical models. This software is usefill in determining basic process characteristics such as dissolution speed versus inter-elcctrode gap width during the individual voltage pulse as well as in the course of pulse series (pulse pack), determining the process critical condition, exploring the possibility of achieving the quasi-steady process state, determining the gap width level on the process completion, which is essential for the tool electrode design. The software allows to carry out PECM shaping for free-form surfaces. Experimental validation has been conducted for the selected mathematical models. It has been carried out for a few materials and electrolyte compositions. Basing on the results obtained, it is possible to conclude that these models (as well as the developed software based on them) are suitable for practical applications.
EN
Machining involves removing a surface layer from an object with the use of mechanical energy. It often happens that this process is very difficult or even impossible due to technical and economic problems ( big strength and tear resistance of the machined material). Therefore, new technological processes of removing the material from the machined object, have been developed. They involve, e.g. dissolution, melting or the material vaporization. These processes need energy of electric discharge, chemical reaction energy, and energy carried by a stream of particles the material destruction which occurs, then, are called the material dissolution (erosion). There are different classifications of dissolution machining The most popular one is electro discharge machining (EDM), electrochemical machining (ECM), stream-dissolution machining (i.e. electron-machining (EBM) and ion- machining (IBM). The purpose of this work is to present the problems connected with the computer aided electrochemical (ECM) as one of a few kinds of dissolution machining.
17
Content available Research of electrolyte low loss in typical ECM gaps
EN
This paper presents the results of research of hydraulic loss during electrolyte flow through gaps typical for ECM machining. The research was conducted on a test station where inducing an oscillatory movement of electrodes was possible. Appropriately prepared electrodes with curvilinear outlines were placed in a machining unit which allowed for measuring the pressure of the electrolyte flow in eight points on the electrode surface and also interelectrode gap inlet and outlet. Additionally, the results of pressure measurements were compared with results obtained from a computer simulation.
PL
Wdrażając wymagania opublikowanego w maju 2010 r. rozporządzenia Komisji (UE) nr 445/2011 z 10 maja 2011 r. w sprawie systemu certyfikacji podmiotów odpowiedzialnych za utrzymanie w zakresie obejmującym wagony towarowe [1], ustanawia się we wszystkich krajach członkowskich UE system certyfikacji podmiotów odpowiedzialnych za utrzymanie w zakresie obejmującym wagony towarowe, o którym mowa w art. 14a dyrektywy 2004/49/WE [2]. Celem systemu certyfikacji jest wykazanie, że podmiot odpowiedzialny za utrzymanie ustanowił swój system utrzymania, oraz że jest w stanie spełnić wymogi określone w tym rozporządzeniu w celu dopilnowania, aby każdy wagon towarowy, za którego utrzymanie jest on odpowiedzialny, był w stanie poruszać się w bezpieczny sposób.
19
Content available remote Obróbka elektrochemiczno-elektroerozyjna materiałów trudno obrabialnych
PL
Przedstawiono prowadzone w Instytucie Zaawansowanych Technologii Wytwarzania badania obróbki elektrochemicznej (ECM) intensyfikowanej przez proces elektroerozyjny (EDM). Wyniki badań wskazują, że uzyskano postęp w technologii elektrochemicznej wspomaganej przez wyładowania elektryczne, wyrażający się w zmniejszeniu energochłonności, podniesieniu dokładności obróbki oraz jakości powierzchni obrobionych, możliwości ich wykonania z nowych, specjalnych materiałów, eliminacji pracochłonnych i szkodliwych dla zdrowia ręcznych operacji wykończeniowych oraz zmniejszenia szkodliwego wpływu cieczy roboczej. Tym samym stworzono warunki do wdrożenia do polskiego przemysłu nowej, atrakcyjnej technologicznie i ekologicznie metody obróbki.
EN
Presented are research works carried out in the Institute of Advanced Production Process Methods on electrochemical treatment (ECM) intensified by electroerosion process (EDM). The work results imply good improvements of the electrochemical process when accompanied by electrical discharge pulses which demonstrate in lower power demand, higher accuracy and surface finish quality and in the prospects of utilization of special grade new materials as well as elimination of labor consuming and hazardous manual finish operations and reduction of harmful effect of working liquid. This is an opportunity to introduce in Polish industry a new treatment method, which seems attractive from both engineering and environmental point of view.
PL
W artykule przedstawiono przykłady wykorzystania precyzyjnych obrabiarek realizujących obróbkę elektrochemiczną, zwłaszcza szeroko rozumianych materiałów trudno obrabialnych. W prezentacji, oprócz obrabiarek uwzględniono także oprzyrządowanie oraz urządzenia pomocnicze, np. do przygotowania i filtrowania elektrolitu, mycia wstępnego i końcowego. Takie kompleksowe ujęcie zagadnienia pozwala uzyskać bardzo dużą dokładność wykonania i gładkość powierzchni po obróbce. Opracowania dokonano na przykładzie wybranych obrabiarek, zapewniających niezawodność produkcji na najwyższym poziomie, przede wszystkim w branży lotniczej i motoryzacyjnej.
EN
In this paper examples of precise ECM machine-tools innovative applications, particularly for machining almost unworkable materials, were described. In presentation, besides machine-tools tooling and auxiliary devices, e.g. for electrolyte preparation and filtering, initial and final washing were included. Such complex approach of problem makes possible to get great accuracy of machining and small machined surface roughness. Elaborate was worked out on example of selected machine tools.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.