The purpose of this study is to examine the entropy generation for a Magnetohydrodynamic flow of a Casson fluid subject to a vertical cone. Here the impact of reaction by chemical and diffusion-thermo is scrutinized. Physical aspects of radiative flux transverse to the surface are deliberated. The governing non-linear PDEs and the expression for entropy generation are non-dimensionalized with the help of dimensionless quantities. Finite difference technique is implemented to get numerical and graphical results for the non-linear system. Bejan number for the heat transfer is also examined. The results obtained shows that entropy generation and Bejan number are strongly influence by the embedded flow parameters.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Numerical studies are performed to examine the Soret, Dufour and viscous dissipation effects on steady MHD, free convection heat and mass transfer from a vertical surface in a doubly stratified Darcy porous medium. The non-linear partial differential equations, governing the problem under consideration, have been transformed by a similarity transformation into a system of ordinary differential equations, which is solved numerically by using the implicit finite difference scheme. The effects of various parameters on the flow field have been examined. The results for the wall temperature and concentration obtained are presented for various values of the parameters Le, N, M, Ec, Sr, Df, [...].
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.