Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Dorset
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Upper Greensand Formation, mostly capped by the Chalk, crops out on the edges of a broad, dissected plateau in Devon, west Dorset and south Somerset and has an almost continuous outcrop that runs from the Isle of Purbeck to the Vale of Wardour in south Wiltshire. The Formation is well exposed in cliffs in east Devon and the Isle of Purbeck, but is poorly exposed inland. It comprises sandstones and calcarenites with laterally and stratigraphically variable amounts of carbonate cement, glauconite and chert. The sedimentology and palaeontology indicate deposition in marginal marine-shelf environments that were at times subject to strong tidal and wave-generated currents. The formation of the Upper Greensand successions in the region was influenced by penecontemporaneous movements on major fault zones, some of which are sited over E-W trending Variscan thrusts in the basement rocks and, locally, on minor faults. Comparison of the principal sedimentary breaks in the succession with the sequence boundaries derived from world-wide sea-level curves suggests that local tectonic events mask the effects of any eustatic changes in sea level. The preserved fauna is unevenly distributed, both laterally and stratigraphically. Bivalves, gastropods and echinoids are common at some horizons but are not age-diagnostic. Ammonites are common at a few stratigraphically narrowly defined horizons, but are rare or absent throughout most of the succession. As a result, the age of parts of the succession is still poorly known.
EN
At its maximum development in the type area on the Devon coast, the Upper Greensand Formation comprises up to 55 m of sandstones and calcarenites with laterally and stratigraphically variable amounts of carbonate cement, glauconite and chert that were deposited in fully marine, shallow-water environments. The formation is divided into three members, in ascending order the Foxmould, Whitecliff Chert and Bindon Sandstone, each of which is bounded by a prominent erosion surface that can be recognised throughout the western part of the Wessex Basin. The full thickness of the formation, up to 60 m, was formerly well exposed in cliffs in the Isle of Purbeck in the steeply dipping limb of the Purbeck Monocline. The upper part of the succession is highly condensed in comparison with the Devon succession and exhibits lateral variations over distances of hundreds of metres that are probably related to penecontemporaneous fault movements. Much of the fauna is not age-diagnostic with the result that the ages of parts of the succession are still poorly known. However, the Isle of Purbeck sections contain diverse ammonite faunas at a few stratigraphically well-defined levels that enable the succession to be correlated with that of east Devon and west Dorset.
EN
The "Lower Lias" mudrocks of the Charmouth Mudstone Formation inWest Dorset coast are world famous for their ammonite faunas, which range from mid Lower Sinemurian (Semicostatum Chronozone) to Lower Pliensbachian (topmost Davoei Chronozone) in age. The succession includes significant non-sequences, however, and as certain other intervals yield only crushed and relatively poorly preserved material, much of the sequence of ammonite faunas of this interval in south-west England has remained poorly understood. Inland, however, although it has been realised for many years that some of the missing horizons reappear, the Formation is very poorly exposed and as a consequence little has been known about its detailed stratigraphy and palaeontology. The systematic recording over 40 years by Mr H.C. Prudden (Montacute) of temporary excavations in East Somerset (around 20 km north of the Dorset coast), combined with material collected by others from similar exposures has now, however, revealed a virtually complete sequence of ammonite faunas through the interval represented by the Formation including from many of the which are missing on the Dorset coast. In particular, only one subchronozone remains to be conclusively proven in the region, the terminal Sinemurian, Aplanatum Subchronozone (Raricostatum Chronozone). This faunal succession is correlated with that on the coast to provide a detailed synthesis of the sequence of ammonite biohorizons in the region, which is correlated with a contemporary Standard Zonation and high-resolution biohorizonal/ zonule scheme for interval in North-West Europe. The significance for regional and international correlations of the Lower Lias is also discussed.
EN
Redcliff Point near Weymouth, Dorset (SW England) exposes one of Europe’s most complete Callovian-Oxfordian boundary sequences and has been the subject of a rigorous multidisciplinary assessment. The boundary sequence lies entirely within the clay facies of the Oxford Clay Formation, the relatively high carbonate content of which facilitates the excellent preservation of both macro- and microfaunas (and floras) as well as geochemical information. Ammonites, in particular, are conspicuous, and partly retain an aragonitic shell. By convention, the stage boundary is drawn at the first occurrence of the genus Cardioceras, which has been interpreted as corresponding to the transition between “Quenstedtoceras” paucicostatum (Lang) and Cardioceras ex gr. scarburgense (Young and Bird), specifically at the first occurrence of C. woodhamense Arkell sensu Callomon (non Marchand). This transition is well seen at Redcliff and provides the primary means through which the boundary can be correlated. Associated Perisphinctina (including Peltoceras, Alligaticeras, Properisphinctes and Euaspidoceras) provide additional biostratigraphical information. Other macrofossil groups show less discernible changes, although the end of the Callovian in England marks the local, virtual disappearance of Boreal cylindroteuthid belemnites with the persistence of Tethyan hibolithids into the Early Oxfordian. Isotopic studies of recovered belemnites record important information on carbon and strontium isotopes and provide new, high resolution data for the refinement of the global curves. The isotope data are also consistent with continuous sedimentation across the boundary. Foraminiferal assemblages are dominated by poorly preserved epistominids. Planktonic Foraminifera are recorded, mainly as pyrite steinkerns. This makes identification difficult although a flood close to the boundary appears to be Globuligerina oxfordiana. Other planktonic taxa are present, including one species that may be new. Nannofloras are well preserved, common to abundant and dominated by Watznaueria britannica with conspicuous Zeugrhabdotus erectus, podorhabdids and Stephanolithion bigotii. The presence of Stephanolithion bigotii maximum throughout, places the samples within the NJ14 biozone. Ostrocoda and holothurian spicules are also recorded. These results are synthesised to provide a multidisciplinary, integrated review of the suitability of Redcliff Point for the definition of an Oxfordian GSSP. Correlations with the French candidate site in Savournon, Haute-Provence are discussed and proposals made for formally establishing a GSSP for the base of the Oxfordian Stage in Europe.
EN
The “Lower Lias” mudrocks of the Charmouth Mudstone Formation in West Dorset coast are world famous for their ammonite faunas, which range from mid Early Sinemurian (Semicostatum Chronozone) to Early Pliensbachian (topmost Davoei Chronozone) in age. The succession includes significant non-sequences, however, and as certain other intervals yield only crushed and relatively poorly preserved material, much of the sequence of ammonite faunas of this interval in South West England has remained poorly understood. Inland, however, although it has been realized for many years that some of the missing horizons reappear, the Formation is very poorly exposed and as a consequence little has been known about its detailed stratigraphy and palaeontology. The systematic recording over 40 years by Mr H. C. Prudden (Somerset Geology Group) of temporary excavations in East Somerset (around 20 km north of the Dorset coast) has now, however, revealed a virtually complete sequence of ammonite faunas through the interval represented by the Formation. In particular, many levels have now been identified which are missing in the major non-sequences on the Dorset coast, thereby revealing a much more complete stratigraphical sequence in the region than previously realized. In particular, only one subchronozone remains to be conclusively proven – the Aplanatum Subchronozone of the Raricostatum Chronozone – although this could still be due to collection failure as nodular facies do not appear to be present at this level and near-surface clay exposures are often too degraded to yield determinable specimens. This faunal succession is correlated with that on the coast to provide a detailed synthesis of the sequence of ammonite biohorizons in the region, which is correlated with a contemporary Standard Zonation and high-resolution biohorizonal/zonule scheme for interval in North West Europe. The significance for regional and international correlations of the Lower Lias is also discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.