In this work a rationalized algorithm for Dirac numbers multiplication is presented. This algorithm has a low computational complexity feature and is well suited to parallelization of computations. The computation of two Dirac numbers product using the naïve method takes 256 real multiplications and 240 real additions, while the proposed algorithm can compute the same result in only 128 real multiplications and 160 real additions. During synthesis of the discussed algorithm we use the fact that Dirac numbers product may be represented as vector-matrix product. The matrix participating in the product has unique structural properties that allow performing its advantageous decomposition. Namely this decomposition leads to significant reducing of the computational complexity.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.