Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Digimat software
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy wykonano symulacje numeryczne procesu niskociśnieniowego przesycania napełniacza w zamkniętych formach (ang. RTM) dla dwóch rodzajów napełniacza: maty z włókna szklanego typu S o nazwie handlowej OCF M8610 oraz tkaniny z włókna szklanego typu E w gatunku Cofab A1118B przy zachowaniu jednakowych parametrów technologicznych. Właściwości włókien ustalono na podstawie przeglądu literatury. Właściwości samego napełniacza obliczono w programie Digimat FE. W celu obliczenia przepływu żywicy (żywica poliestrowa Arotran Q6055) wyznaczono porowatość oraz przepuszczalność napełniacza. Symulacje procesu RTM przeprowadzono w programie Autodesk Moldflow Insight 2013 dla modelu fotela pasażera pojazdu komunikacji miejskiej. Przeanalizowano m. in. temperaturę, ciśnienie oraz stopień utwardzenia żywicy w gnieździe formy w zależności od rodzaju napełniacza.
EN
In this work the advanced numerical analyses of the RTM process for two types of reinforcement (OCF M8610 mat nade from fiberglass of S type and Cofab A1118B fabric made from glass fibers of E type) were performed. The analyses were made with the same type of polyester resin (Arotran Q6055 type) and at identical process parameters. The basic properties of fibers were determined on the basis of literature review. The properties of the reinforcement were determined on the basis of calculations by means of Digimat FE software. To calculate the resin flow the porosity and permeability of the reinforcement were determined. The RTM process simulations were performed by means of Autodesk Moldflow Insight 2013 commercial code for the passenger seat used in vehicle of public transport. The temperature, pressure and bulk conversion of the resin in the mold cavity depending on the type of reinforcement were taking into account.
EN
In this study prediction of the strength properties of composites made of polyester resin and continuous glass fiber reinforcement in established grades was performed. Structure modeling based on the numerical homogenization method was conducted using Digimat FE commercial code, taking into account the geometry and properties of all the composite components. In the first stage, analysis was performed for OCF M8610 mat. At the beginning the calculations were done for beam roving from S glass. Preliminary calculations were performed for the virtual composition of glass fibers-air, which allowed calculation of the yarn properties, directly used to build the glass mat model. The second stage of the calculation was carried out for glass mat saturated with polyester resin. For this purpose, roving bundle data and polymer matrix data were implemented. The volume fraction of the glass mat in the composite was also determined, and a random fiber orientation in the plane was defined. The properties of the fabric-resin composite were calculated for polyester resin and Cofab A1118B glass fiber plain weave fabric. The basic properties of the fiber in the analyzed bi-directional fabric were established on the basis of literature. The calculation of some fabric properties was conducted by a different algorithm than in the case of the mat. The last stage of property calculation for the warp and weft was to predict the weave properties based on the manufacturer's data. Only at this stage was the mean field method (MFM) used in the calculations. The geometrical dimensions of the reinforcements were calculated including its grammage, where the value is highly compatible with the grammage given in the literature. For both types of reinforcement visualization of the composite structure was performed. The calculated composite properties were used in strength simulations of a useful product for three variants of composite reinforcement: (a) polyester resin without reinforcement, (b) polyester resin with glass fiber mat, (c) polyester resin with glass fiber fabric, which allowed carrying out a comparative strength analysis.
PL
W pracy przeprowadzono prognozowanie wytrzymałości kompozytów wykonanych z żywicy poliestrowej i tkaniny lub maty z włókien szklanych w ustalonych gatunkach. Modelowanie struktury kompozytów wykonano z wykorzystaniem metody numerycznej homogenizacji z użyciem oprogramowania Digimat FE, biorąc pod uwagę geometrię i właściwości każdego składnika kompozytu. W pierwszym etapie przeprowadzono analizę dla maty w gatunku OCF M8610. Wykonano niezbędne obliczenia dla jednej wiązki rowingu typu S. Wstępne obliczenia dotyczyły wariantu kompozycji: włókna szklane - powietrze. Umożliwiły one obliczenie właściwości przędzy, bezpośrednio wykorzystywanej do budowy modelu maty szklanej. W drugim etapie przeprowadzono obliczenia dla kompozycji: mata - żywica poliestrowa. W tym celu uwzględniono dane wiązki i osnowy polimerowej. Określono także udział objętościowy maty szklanej w kompozycie oraz zdefiniowano, jako losową, orientację włókien w płaszczyźnie. Właściwości kompozycji typu tkanina - żywica obliczono dla tkaniny z włókna szklanego w gatunku Cofab A1118B i żywicy poliestrowej. Podstawowe właściwości włókna w analizowanej dwukierunkowej tkaninie zostały ustalone na podstawie literatury. Obliczenie niektórych właściwości tkaniny wykonano za pomocą innego algorytmu niż w przypadku maty. Ostatnim etapem obliczania właściwości osnowy i wątku było określenie splotu tkaniny zgodnie z danymi producenta. Obliczono geometryczne wymiary wzmocnienia kompozytu, w tym jego gramaturę, której wartość w dużym stopniu jest zgodna z gramaturą tkaniny określoną przez producenta. Wyłącznie na tym etapie zastosowano w kalkulacjach metodę homogenizacji uśrednionego pola (ang. MFM). Dla obydwóch typów wzmocnienia wykonano wizualizację struktury kompozytów. Obliczone właściwości kompozytu zostały wykorzystane do symulacji wytrzymałości wytworu użytkowego dla trzech wariantów wzmocnienia: a) żywicy poliestrowej bez zbrojenia, b) żywicy poliestrowej z matą z włókna szklanego, c) żywicy poliestrowej z tkaniną z włókna szklanego, co pozwoliło na przeprowadzenie wytrzymałościowej analizy porównawczej.
EN
In this work the calculations for predicting the properties of wood fiber mats – polyester resin composite using numerical homogenization method were performed. For this purpose, the microstructural strength properties were calculated using DIGIMAT FE commercial code. In addition, for com-parative purposes a calculation of polyester resin – glass fiber composites was conducted. This allowed to compare the properties of two types of com-positions. In addition, the obtained strength properties were used to simulate the work of product made of these composites. This study was performed using the Ansys commercial code. Usability of the polyester resin – wood fiber mat composite and knowledge of its properties will allow to find a correct application of this composite type and can provide an alternative way to other polymeric resin reinforced by mat.
EN
In order to reduce costs of experimental research, new methods of forecasting material properties are being developed. The current intensive increase in computing power motivates to develop the computer simulations for material properties prediction. This is due to the possibility of using analytical and numerical methods of homogenization. In this work calculations for predicting the properties of WPC composites using analytical homogenization methods, i.e. Mori-Tanaka (first and second order) models, Nemat-Nasser and Hori models and numerical homogenization methods were performed.
EN
The paper presents an assessment of the filler percentage impact on the stress-strain characteristics of wood-polymer composite (WPC) samples loaded in a uniaxial tensile test. The analysis was based on both experimental studies as well as numerical simulations. The manufactured composite consisted of polypropylene as the polymer matrix and wood fiber (WF) of varying percentages, i.e. 10÷40%. Numerical modeling of the static tensile test was performed using Ansys commercial code taking into account the heterogeneous composite structure and fibers orientation. In order to define the heterogeneous material, Digimat software was used. Appropriate calculations were made using the Mori-Tanaka homogenization model.
PL
Przedstawiono ocenę wpływu zawartości procentowej napełniacza na charakterystykę naprężenie-odkształcenie próbek wykonanych z kompozytu drewno-polimer (WPC) jako wynik jednoosiowej próby rozciągania. Analiza została oparta zarówno o badania eksperymentalne, jak również symulacje numeryczne. Wtryskiwany kompozyt składał się z polipropylenu jako matrycy polimerowej oraz włókna drzewnego (WD) o zmiennej ilości w zakresie od 10÷40%. Modelowanie numeryczne statycznej próby rozciągania wykonano w programie Ansys z uwzględnieniem heterogenicznej struktury kompozytu oraz powtryskowej orientacji włókien. W celu zdefiniowania heterogenicznego materiału wykorzystano komercyjne oprogramowanie Digimat, za pomocą którego wykonano obliczenia z wykorzystaniem modelu homogenizacji Mori-Tanaka.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.