Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  DenseNet
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An intracranial aneurysm is a swelling in a weak area of a brain artery. The main cause of aneurysm is high blood pressure, smoking, and head injury. A ruptured aneurysm is a serious medical emergency that can lead to coma and then death. A digital subtraction angiogram (DSA) is used to detect a brain aneurysm. A neurosurgeon carefully examines the scan to find the exact location of the aneurysm. A hybrid model has been proposed to detect these aneurysms accurately and quickly. Visual Geometry Group 16 (VGG16) and DenseNet are two deep-learning architectures used for image classification. Ensembling both models opens the possibility of using diversity in a robust and stable feature extraction. The model results assist in identifying the location of aneurysms, which are much less prone to false positives or false negatives. This integration of a deep learning-based architecture into medical practice holds great promise for the timely and accurate detection of aneurysms. The study encompasses 1654 DSA images from distinct patients, partitioned into 70% for training (1157 images) and 30% for testing (496 images). The ensembled model manifests an impressive accuracy of 95.38%, outperforming the respective accuracies of VGG16 (94.38%) and DenseNet (93.57%). Additionally, the ensembled model achieves a recall value of 0.8657, indicating its ability to correctly identify approximately 86.57% of true aneurysm cases out of all actual positive cases present in the dataset. Furthermore, when considering DenseNet individually, it attains a recall value of 0.8209, while VGG16 attains a recall value of 0.8642. These values demonstrate the sensitivity of each model to detecting aneurysms, with the ensemble model showcasing superior performance compared to its individual components.
PL
Tętniak wewnątrzczaszkowy to obrzęk w słabym obszarze tętnicy mózgowej. Główną przyczyną tętniaka jest wysokie ciśnienie krwi, palenie tytoniu i uraz głowy. Pęknięcie tętniaka jest poważnym stanem nagłym, który może prowadzić do śpiączki, a następnie śmierci. W celu wykrycia tętniaka mózgu stosuje się cyfrową angiografię subtrakcyjną (DSA). Neurochirurg dokładnie bada skan, aby znaleźć dokładną lokalizację tętniaka. Zaproponowano model hybrydowy do dokładnego i szybkiego wykrywania tych tętniaków. Visual Geometry Group 16 (VGG16) i DenseNet to dwie architektury głębokiego uczenia wykorzystywane do klasyfikacji obrazów. Połączenie obu modeli otwiera możliwość wykorzystania różnorodności w solidnej i stabilnej ekstrakcji cech. Wyniki modelu pomagają w identyfikacji lokalizacji tętniaków, które są znacznie mniej podatne na fałszywie dodatnie lub fałszywie ujemne. Ta integracja architektury opartej na głębokim uczeniu się z praktyką medyczną jest bardzo obiecująca dla szybkiego i dokładnego wykrywania tętniaków. Badanie obejmuje 1654 obrazów DSA od różnych pacjentów, podzielonych na 70% do treningu (1157 obrazów) i 30% do testowania (496 obrazów). Złożony model wykazuje imponującą dokładność 95,38%, przewyższając odpowiednie dokładności VGG16 (94,38%) i DenseNet (93,57%). Dodatkowo, złożony model osiąga wartość pełności 0,8657, co wskazuje na jego zdolność do prawidłowej identyfikacji około 86,57% prawdziwych przypadków tętniaka spośród wszystkich rzeczywistych pozytywnych przypadków obecnych w zbiorze danych. Ponadto, biorąc pod uwagę DenseNet indywidualnie, osiąga on wartość pełności 0,8209, podczas gdy VGG16 osiąga wartość pełności 0,8642. Wartości te pokazują czułość każdego modelu w wykrywaniu tętniaków, przy czym model zespołowy wykazuje lepszą wydajność w porównaniu z jego poszczególnymi komponentami.
2
Content available Skin lesion detection using deep learning
EN
Skin lesion can be deadliest if not detected early. Early detection of skin lesion can save many lives. Artificial Intelligence and Machine learning is helping healthcare in many ways and so in the diagnosis of skin lesion. Computer aided diagnosis help clinicians in detecting the cancer. The study was conducted to classify the seven classes of skin lesion using very powerful convolutional neural networks. The two pre trained models i.e DenseNet and Incepton-v3 were employed to train the model and accuracy, precision, recall, f1score and ROCAUC was calculated for every class prediction. Moreover, gradient class activation maps were also used to aid the clinicians in determining what are the regions of image that influence model to make a certain decision. These visualizations are used for explain ability of the model. Experiments showed that DenseNet performed better then Inception V3. Also it was noted that gradient class activation maps highlighted different regions for predicting same class. The main contribution was to introduce medical aided visualizations in lesion classification model that will help clinicians in understanding the decisions of the model. It will enhance the reliability of the model. Also, different optimizers were employed with both models to compare the accuracies.
3
Content available remote Parallel classification model of arrhythmia based on DenseNet-BiLSTM
EN
In order to improve the classification performance of the model for different kinds of arrhythmias, a parallel classification model of arrhythmia based on DenseNet-BiLSTM is researched and proposed. Firstly, the model adopts a parallel structure. After wavelet denoising and heartbeat segmentation of ECG signals, this model can simultaneously capture the waveform features of small-scale heartbeat and large-scale heartbeat containing RR interval; Then, based on deep learning, Densely connected convolutional network (DenseNet) is applied to improve the model’s ability to extract local features of ECG signals, and bidirectional long short-term memory network (BiLSTM) is introduced to improve the performance of the model in extracting time series features of ECG signals; Finally, weighted cross entropy loss function is used to alleviate the class imbalance of arrhythmia, and Softmax function is applied to achieve 4 classifications of arrhythmia. Experiments based on MIT-BIH arrhythmia database show that under the intra-patient paradigm, training time for each epoch, overall accuracy, F1 and specificity are 42 s, 99.44%, 95.89% and 99.32%, respectively; Under the inter-patient paradigm, training time for each epoch, overall accuracy, F1 and specificity are 23 s, 92.37%, 63.49% and 94.51%, respectively. Compared with other classification models, the model proposed in this paper has a good classification effect and is expected to be used in clinical auxiliary diagnosis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.