Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  DSB
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
At the National Institute of Metrological Research (INRIM) an evaluation of a commercial dual source high resistance bridge has been performed. Its two main measurement modes (single measurements and multiple measurements) have been investigated. The best settle time of a 10:1 measurement of high resistance ratio has been estimated to be about three times the time constant of the circuit involving the resistors. This constant, in turn, depends on the highest value resistor. By means of mathematical estimators, suitable numbers of the readings of the detector have been established in order to minimize noises. A compatibility test at 100 TΩ has shown that the best precision of the commercial bridge is achieved utilizing the multiple measurements mode with the auto update function. This mode also allows the characterization of a resistor as a function of the settle time. This characterization can be useful for the owner of the resistor who can request the laboratory to perform the calibration of the resistor with the settle time which is necessary for him.
PL
Kadm (Cd) jest białym metalem o niebieskawym odcieniu. Tworzy szereg związków, występując w nich wyłącznie w 2+ stopniu utlenienia. Związki kadmu są w różnym stopniu rozpuszczalne w wodzie. Do grup największego ryzyka zalicza się pracowników zatrudnionych przy produkcji: akumulatorów niklowo-kadmowych, stopów, pigmentów kadmowych, barwieniu tworzyw sztucznych pigmentami, a także pracowników hut metali nieżelaznych oraz spawaczy tnących metale powleczone antykorozyjną warstwą kadmu. Według danych Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym w Polsce na kadm i jego związki było narażonych 4 276 pracowników. Kadm ulega wchłanianiu do organizmu drogą wziewną i pokarmową. U ludzi wchłanianie wynosi odpowiednio: 2 ÷ 50% i 4 ÷ 6%. Eliminacja kadmu z organizmu jest procesem powolnym. Szacowane okresy półtrwania kadmu wynoszą od 5 do 30 lat. Wyniki badań przeprowadzonych u osób narażonych na kadm w środowisku pracy wykazały, że stężenie progowe kadmu w moczu, przy którym stwierdzono wzmożone wydalanie w moczu białek niskocząsteczkowych, wynosiło 5 ÷ 10 µg/g kreatyniny. Międzynarodowa Agencja Badań nad Rakiem (IARC) uznała w 1993 r. kadm za czynnik rakotwórczy dla ludzi (grupa 1.). Wyniki badań eksperymentalnych na szczurach dostarczyły dowodów na rakotwórcze działanie kadmu w wyniku narażenia inhalacyjnego. Kadm jest uznany przez SCOEL za czynnik rakotwórczy kategorii zagrożenia C (czyli jako genotoksyczny czynnik rakotwórczy), dla którego można określić próg (stężenie) działania, zwany również progiem praktycznym. Narządami krytycznymi toksycznego działania kadmu i jego związków nieorganicznych u ludzi (w zależności od drogi narażenia – pokarmowa, inhalacyjna) są nerki, płuca oraz prawdopodobnie kości. Skutkiem krytycznym w przypadku działania kadmu na nerki jest wzmożone wydalanie w moczu białek niskocząsteczkowych, natomiast skutkiem krytycznym w przypadku działania na płuca jest działanie rakotwórcze związku. Jako podstawę do zaproponowania wartości najwyższego dopuszczalnego stężenia (NDS) dla frakcji wdychalnej kadmu i jego związków przyjęto wyniki badań inhalacyjnych na szczurach narażanych na kadm o stężeniach: 30; 13,4 lub 10 µgCd/m³ przez 18 miesięcy. Stężenie 10 µg Cd/m³ przyjęto jako wartość NOAEL. Po podstawieniu do wzoru i uwzględnieniu współczynników niepewności o łącznej wartości 10 ustalono stężenie 0,001 mg/m³ (1 µg Cd/m³ ) jako wartość NDS dla frakcji wdychalnej. Monitoring biologiczny jest najlepszym wskaźnikiem narażenia na kadm. Wydalanie kadmu z moczem umożliwia ocenę wielkości kumulacji związku w ustroju oraz uwzględnia wszystkie źródła narażenia na kadm, w tym skażonej żywności i palenia tytoniu, natomiast stężenie kadmu we krwi stanowi marker aktualnego narażenia. Dotychczasowe wartości DSB we krwi i w moczu wynosiły odpowiednio 5 μg Cd/l i 5 μg Cd/g kreatyniny. Po dyskusji na 91. posiedzeniu Międzyresortowej Komisji ds. NDS i NDN wartości te pozostawiono jako obowiązujące. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Cadmium (Cd) is a white metal with a bluish tint. It forms a number of compounds occurring in them on the degree of oxidation 2+. Cadmium compounds are water-soluble to varying degrees. The highest risk groups include employees involved in the production of nickel-cadmium batteries, alloys, cadmium pigments as well as employees of non-ferrous metal smelters and cutting welders of metals covered with a cadmium anti-corrosion layer. According to the Central Register of Data on Exposure to Substances , Preparations, Factors or Technological Processes on Carcinogenic or Mutagenic Action, 4276 workers in Poland were exposed to cadmium and its compounds. Cadmium is absorbed into the body through inhalation and digestive systems. In humans, the absorption is 2–50% and 4–6%, respectively. Elimination of cadmium from the body is a slow process. The estimated half-life of cadmium is from 5 to 30 years. Results of studies conducted in subjects exposed to cadmium in the work environment showed that the threshold concentration of cadmium in urine, at which increased excretion of low molecular weight proteins in urine was found, is 5–10 µg/g creatinine. In 1993, IARC identified cadmium and its compounds as a human carcinogen (group 1). The results of experimental studies in rats provided evidence of cadmium carcinogenicity as a result of inhalation exposure. Cadmium is recognized by SCOEL as a category C carcinogen, i.e. as a genotoxic carcinogen for which a threshold of action (concentration) can be determined, also called a practical threshold. The critical organs for the toxic effects of cadmium and its inorganic compounds in humans, depending on the route of exposure, are kidneys, lungs and possibly bones. The critical effect of cadmium on kidneys is increased excretion of low molecular weight proteins in urine, while the critical effect on lungs is the carcinogenic effect. Inhalation studies in rats exposed to cadmium at concentrations of 30 µgCd/m³ , 13.4 µgCd/m³ and 10 µgCd/m³ for 18 months were used as the basis to propose TLV-TWA. The concentration of 10 µg Cd/m³ was taken as the NOAEL value. After applying the formula and taking into account the uncertainty factors with a total value of 10, the concentration of 0.001 mg/m3 (1 µgCd/m³ ) was determined as the TLV-TWA value for the inhaled fraction. Biological monitoring is the µgCd/m³ ) was determined as the TLV-TWA value for the inhaled fraction. Biological monitoring is the best indicator of cadmium exposure. The excretion of cadmium in urine enables the assessment of cumulative cadmium in the body and takes into account all sources of cadmium exposure, including contaminated food and smoking, while the blood cadmium concentration is a measure of current exposure. Previous BEI values in blood and urine were 5 μgCd/l and 5 μgCd/g creatinine, respectively. After discussion at the 91st meeting of the Interministerial Committee for TLVs and PELs, these values were maintained as mandatory. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
2,2’-Dichloro-4,4’-metylenodianilina (MOCA) należy do grupy amin aromatycznych. Otrzymywana jest w reakcji formaldehydu i 2-chloroaniliny. Nie jest produkowana w Europie, a jej import do Europy jest szacowany na 1 000 ÷ 10 000 t/rok. MOCA wykazuje umiarkowane działanie toksyczne na zwierzęta. Mediany dawek letalnych MOCA dla gryzoni wynoszą 400 ÷ 1 140 mg/kg mc. Związek ten wywiera także umiarkowane działanie drażniące na skórę i oczy. Nie wywiera działania uczulającego. Dane na temat toksyczności podprzewlekłej i przewlekłej MOCA dla zwierząt wskazują na toksyczność wielonarządową. MOCA wykazuje działanie mutagenne i genotoksyczne zarówno w warunkach in vivo, jak i in vitro. W testach bakteryjnych wymaga obecności aktywacji metabolicznej. Powoduje uszkodzenie DNA oraz tworzy addukty z DNA. W dostępnym piśmiennictwie nie znaleziono informacji na temat wpływu MOCA na rozrodczość ludzi. Nie ma danych na temat embriotoksyczności i teratogenności tego związku. W doświadczeniu na szczurach wykazano, że MOCA nie ma wpływu na potencjał rozrodczy rodziców oraz wzrost i rozwój pre- i postnatalny potomstwa. MOCA w Unii Europejskiej ma zharmonizowaną klasyfikację jako substancja rakotwórcza kategorii zagrożenia 1B (Carc. 1B). W IARC uznano, że dowód na rakotwórcze działanie MOCA u ludzi jest niewystarczający. Wyniki badań na zwierzętach dostarczyły wystarczających dowodów rakotwórczego działania MOCA. W ogólnej ocenie IARC zaliczyła MOCA do grupy 1 – związków o działaniu rakotwórczym na ludzi. W SCOEL (2010) MOCA zaliczono do grupy A – genotoksycznych kancerogenów o działaniu bezprogowym. Obowiązujące wartości normatywów higienicznych MOCA wynoszą 0,22 ÷ 0,005 mg/m3 w wielu państwach i są oznakowane zwykle „skóra” oraz „carcinogen”. Ponadto w wielu państwach, ze względu na działania rakotwórcze MOCA, nie ustalono wartości najwyższych dopuszczalnych stężeń (NDS) MOCA. Także w Unii Europejskiej SCOEL nie ustalił wartości normatywu dla MOCA. Komisja Europejska w 2018 r. wystąpiła z wnioskiem o wpisanie wartości dopuszczalnego stężenia 0,01 mg/m3 jako wartości wiążącej (BOELV) z jednoczesną notacją „skóra” do załącznika III do wniosku dotyczącego Dyrektywy Parlamentu i Rady zmieniającej dyrektywę 2004/37/WE w sprawie ochrony pracowników przed zagrożeniem dotyczącym narażenia na działanie czynników rakotwórczych lub mutagenów podczas pracy. Zaproponowano przyjąć wartość 5 μmol MOCA/mol kreatyniny w moczu pobieranym na zakończenie zmiany roboczej jako wartość dopuszczalnego stężenia w materiale biologicznym (DSB). Jako podstawę do zaproponowania wartości NDS przyjęto działanie rakotwórcze MOCA. Ponieważ MOCA jest genotoksycznym kancerogenem o działaniu bezprogowym, wobec tego wartość normatywu higienicznego oparto o szacowanie ryzyka nowotworowego dla tego związku. Wszystkie istniejące szacowania ryzyka są oparte na podstawie wyników eksperymentu na szczurach w warunkach narażenia przewlekłego, otrzymujących MOCA w paszy, przy zastosowaniu różnych modeli obliczeniowych. Obowiązująca dotychczas w Polsce wartość NDS MOCA na poziomie 0,02 mg/m3została ustalona na podstawie modelu liniowego przy założonym ryzyku 10-4. Szacowanie ryzyka nowotworowego przy zastosowaniu modelu dwustopniowego dało wartości ryzyka odpowiednio: 4,6 10-4dla stężenia MOCA 0,02 mg/m3oraz 1,7 10-4 dla stężenia 0,01 mg/m3. Komitet ds. Oceny Ryzyka (RAC), stosując model liniowy dla narażenia inhalacyjnego na MOCA o stężeniu 0,01 mg/m³, otrzymał podobną wartość ryzyka, wynoszącą 9,65 10-5(≈ 1 10-4). Ponieważ przedstawione szacowania ryzyka dały podobne wartości dla stężenia 0,01 mg/m³ oraz Unia Europejska zaproponowała tę wartość jako stężenie wiążące, zaproponowano przyjąć w Polsce wartość NDS MOCA w powietrzu środowiska pracy na poziomie 0,01 mg/m3. Główną drogą narażenia na MOCA w warunkach zawodowych jest droga dermalna. Dlatego też poziomy MOCA w próbach moczu pracowników są lepszym wskaźnikiem dla oceny całkowitego narażenia niż pomiar stężeń MOCA w powietrzu. MOCA nie jest wykrywana w moczu osób nienarażonych zawodowo, czyli pozostaje poniżej limitu detekcji metody. Dlatego też biologiczna wartość wskaźnikowa (BGV), (ang. biological guidance value) dla MOCA powinna odpowiadać limitowi detekcji metody biomonitoringu. Jednak ze względów praktycznych zaproponowano przyjąć wartość 5 μmol MOCA/mol kreatyniny w moczu pobieranym na zakończenie zmiany roboczej jako odpowiednik wartości DSB. W warunkach przemysłowych stężenie całkowite MOCA poniżej 5 μmol/mol kreatyniny może być osiągnięte przy stosowaniu odpowiednich warunków higienicznych pracy. Ponadto, zgodnie z oceną ryzyka przedstawioną przez SCOEL, takie stężenie MOCA w moczu prowadzi do ryzyka nowotworowego wynoszącego 3 ÷ 4 10-6. Biomonitoring powinien być uzupełniony monitoringiem powietrza oraz, kiedy jest to wskazane, pomiarami zanieczyszczeń: skóry, rękawic i powierzchni roboczych, aby zidentyfikować źródła narażenia. Ponieważ narażenie przez skórę ma znaczny udział w ilości MOCA wchłoniętej do organizmu pracownika, wymagana jest notacja „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową). Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
,2’-Dichloro-4,4’-methylenedianiline (MOCA) is an aromatic amine. It is produced by the reaction of formaldehyde and 2-chloroaniline. It is not produced in Europe. Its import to Europe is estimated at 1 000–10 000 t/year. MOCA has a moderate toxic effect on animals; median lethal doses after oral administration to rodents are 400–1140 mg/kg bw. It has a moderate irritant effect on the skin and eyes, but no allergenic effect. Data on subchronic and chronic animal toxicity indicate multiorgan toxicity. MOCA shows mutagenic and genotoxic potential, both in vivo and in vitro. No data are available on the effects of MOCA on human reproduction or on the embryotoxicity and teratogenicity. The only rat experiment showed that MOCA has no influence on the reproductive potential of parents, and the growth and the of development of offspring. MOCA has a harmonised classification as Carc.1B. IARC considered that there were was insufficient evidence of MOCA carcinogenicity in humans and sufficient evidence of carcinogenicity in animals. In the overall assessment IARC classified MOCA into group 1 – compound carcinogenic to humans. SCOEL included MOCA to genotoxic carcinogens with non-threshold effect (group A). The values of the current hygiene standards range from 0.22 mg/m³ to 0.005 mg/m³ and are labelled “skin” and “carcinogen”. Furthermore, in many countries, no limit values have been set for MOCA due to its carcinogenicity. Also in the EU, SCOEL did not set a standard value for MOCA. In 2018 the European Commission has proposed to include a limit value of 0.01 mg/m³ as a binding value (BOELV) with the simultaneous notation of ‘skin’ in Annex III to the proposal for a Directive of the European Parliament and of the Council amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work. The MAC value currently in force in Poland (0.02 mg/m³ ) was derived on the basis of the linear model with the assumed risk of 10-4. The cancer risk assessment using the two-step model gave the risk values accordingly: 4.6 - 10-4for MOCA concentration 0.02 mg/m³ and 1.7 - 10-4for 0.01 mg/m³ . A similar risk value of 9.65 - 10-5 (≈ 1 - 10-4) for inhalation exposure to 0.01 mg/m³ was assigned by RAC using a linear model. In view of the fact that the risk assessments gave compatible values for 0.01 mg/m³ and that the European Union proposed this value as BOELV, it was proposed to use a MOCA concentration in workplace air of 0.01 mg/m³ as the MAC value in Poland. The main route of exposure to MOCA in at occupational conditions is the dermal route. MOCA levels in workers’ urine are a better indicator for overall exposure assessment than measuring MOCA concentrations in workplace air. However, for practical reasons, it was proposed 5 µmol MOCA/mole creatinine in urine collected at the end of the shift as an equivalent to BEI. According to the risk assessment presented by SCOEL, this MOCA concentration in urine leads to a cancer risk of 3–4 - 10-6. Since dermal exposure accounts for a significant proportion of the MOCA taken by workers, a ‘skin’ notation is required. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Buta-1,3-dien jest gazem stosowanym do produkcji żywic termoplastycznych i elastomerów kauczuku i lateksu. Buta-1,3-dien wchłania się głównie w układzie oddechowym, a następnie jest metabolizowany do monoepoksydu – 1,2-epoksybut-3-enu i diepoksydu – 1,2:3,4-diepoksybutanu, a po ich sprzężeniu z glutationemjest wydalany z moczem. Z danych Centralnego Rejestru o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym wynika, że w 2015 r. liczba narażonych na ten związek w Polsce wynosiła 958 osób i dodatkowo około 200 było narażonych na substancje ropopochodne, których działanie rakotwórcze jest uzależnione od buta-1,3-dienu. Według danych stacji sanitarno-epidemiologicznych w 2013 r. oraz 2016 r. nie zanotowano w polskim przemyśle narażenia pracowników na buta-1,3-dien o stężeniu większym niż 4,4 mg/m3, czyli przekraczającym obowiązującą wartość NDS. Buta-1,3-dien w małych stężeniach jest łagodnym czynnikiem narkotycznym dla ludzi, natomiast u osób zawodowo narażonych na ten związek stwierdzano objawy jego działania drażniącego na błony śluzowe oczu i dróg oddechowych. Buta-1,3-dien jest substancją o niewielkiej toksyczności ostrej dla zwierząt (wartość LC50 dla szczurów wynosi 270 000 mg/m3). Substancja ta jest mutagenna i genotoksyczna, może powodować uszkodzenia materiału genetycznego komórek somatycznych i komórek płciowych. Wykazano, że buta-1,3-dien jest czynnikiem rakotwórczym dla myszy B6C3F1 i szczurów. Istnieją również dowody epidemiologiczne świadczące o tym, że narażenie zawodowe na buta-1,3-dien jest związane z ryzykiem powstawania nowotworów układu limfohematopoetycznego. Według klasyfikacji IARC buta-1,3-dien jest zaliczany do grupy 1, czyli czynników rakotwórczych dla ludzi, a wg klasyfikacji ACGIH do grupy A2, czyli substancji podejrzanych o działanie rakotwórcze na ludzi. W Europie buta-1,3-dien jest zaklasyfikowany do kategorii 1A czynników rakotwórczych i do kategorii 1B czynników mutagennych. Buta-1,3-dien nie powoduje zaburzeń płodności, a jego działanie teratogenne ujawniło się tylko wówczas, gdy zastosowane dawki były toksyczne dla matek. W dyrektywie Parlamentu Europejskiego i Rady (UE) dla buta-1,3-dienu podano wartości dopuszczalnego stężenia wiążącego (BOELV) na poziomie 2,2 mg/m3. Dyrektywa wejdzie w życie w państwach członkowskich UE 17 stycznia 2020 r. Zaproponowano przyjęcie wartości najwyższego dopuszczalnego stężenia (NDS) buta-1,3-dienu w powietrzu środowiska pracy na poziomie 2,2 mg/m3 oraz następujące wskaźniki dopuszczalnego stężenia w materiale biologicznym (DSB): –– 1,6 mg 1,2-dihydroksy-4-(N-acetylocysteino-S-ylo)butanu/g kreatyniny w moczu, mierzone nazakończenie zmiany roboczej –– 2,1 pmol/g Hb – addukty hemoglobiny: mieszanina N-[1-(hydroksymetylo)prop-2-enylo]waliny iN-(2-hydroksybut-3-enylo)waliny we krwi obrazujące narażenie w okresie ostatnich 120 dni. Normatyw ten dodatkowo oznaczono „Carc. 1A” – substancja o udowodnionym działaniu rakotwórczym dla człowieka i „Muta. 1B” – substancja, która jest rozpatrywana jako mutagenna dla człowieka. Nie znaleziono podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) buta-1,3-dienu. Oszacowane dodatkowe ryzyko powstania białaczki przy 40-letnim okresie narażenia na buta-1,3-dien o stężeniu 2,2 mg/m3 wynosi 8 10-7, jest więc małe w porównaniu z ryzykiem dla populacji generalnej w Polsce, które wynosi 7,15 10-5.
EN
Buta-1,3-diene is a gas used in the production of thermoplastic resins, elastomers and synthetic rubber. Buta-1,3-diene is absorbed mainly in the respiratory tract and then metabolized to monoepoxide – 1,2-epoxybut- -3-ene and diepoxide – 1.2:3,4 diepoxybutane, and after their conjugation with glutathione is excreted with urine. According to data from the Central Registry on Exposure to Substances, Mixtures, Agents or Carcinogenic or Mutagenic Technological Processes, in 2015 the number of people exposed to buta-1,3-diene in Poland was 958 and additionally about 200 were exposed to petroleum substances which carcinogenic effect is depending on the buta-1,3-diene. According to data from sanitary-epidemiological stations, in Poland in 2013 and 2016, there were no workers exposed to buta-1,3-diene at levels exceeding maximum allowable concentration (MAC) of 4.4 mg/m3 . Buta-1,3-diene in small concentrations is a mild narcotic agent for humans, while for occupationally xposed workers it has irritating properties to the mucous membranes of the eyes and airways. Buta-1,3-diene is a substance with low acute toxicity to animals (LC50 value for rats is 270 000 mg/m3 ). This substance is mutagenic and genotoxic, it can cause damage to the genetic material of somatic and germ cells. It has been proved that buta-1,3-diene is carcinogenic for B6C3F1 mice and rats. There is also epidemiological evidence that occupational exposure to buta-1,3-diene is associated with the risk of a cancer of a lymphohematopoietic system. According to the IARC classification, buta-1,3-diene is included in group 1, i.e., carcinogenic substances for humans, and according to ACGIH classification to group A2, i.e., substances suspected to be carcinogenic for humans. In Europe, buta-1,3-diene is classified in Cat. 1A. carcinogens and Cat. 1B. mutagenic compounds. Buta-1,3-diene does not cause fertility disturbances, and its teratogenic effects appeared when doses were toxic to mothers only. In Directive 2017/2398 of the European Parliament and of Council (EU) 2017/2398 of 12 December 2017 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work for buta-1,3-diene, binding occupational exposure limit value (BOELV) was at the level of 2.2 mg/m3 (Official Journal of the EU L 345 of 27/12/2017, p. 87). The directive will be in force in the EU Member States on January 17, 2020. It was proposed to adopt the value of the maximum allowable concentration (MAC) of the buta-1,3-diene at the level of 2.2 mg/m3 and the following values of the biological exposure indices (BEI): – 1.6 mg of 1,2-dihydroxy-4-(N-acetyl-cystein- -S-yl)butane/g creatinine in urine measured at the end of working shift – 2.1 pmol/g Hb - hemoglobin adducts: mixture of N-[1-(hydroxymethyl)prop-2-enyl]valine and N-(2-hydroxybut-3-enyl)valine in blood showing exposure for the last 120 days. This standard is additionally marked Carc. 1A – a substance with proven carcinogenic effect for humans and Muta. 1B – a substance that is considered mutagenic for humans. There is no evidence for establishing STEL value for buta-1,3-diene. The estimated additional risk of leukemia during the 40-year exposure to buta-1,3-diene at a concentration of 2.2 mg/m3 is 8×10-7, it is lower than the risk for the general population in Poland, which is 7.15×10-5.
5
Content available N-Metyloanilina
PL
N-Metyloanilina (NMA) jest bezbarwną, oleistą cieczą bez zapachu lub o słabym zapachu amoniaku, stosowaną głównie jako rozpuszczalnik. W dostępnym piśmiennictwie dane toksykologiczne na temat N-metyloaniliny są nieliczne, brak jest również danych epidemiologicznych. Narażenie zawodowe na N-metyloanilinę jest możliwe drogą: inhalacyjną, dermalną lub pokarmową. N-Metyloanilina należy do substancji nie bezpiecznych. Wartość LD po podaniu jej per os szczurom wynosi 700 ÷ 800 mg/kg masy ciała. Substancja działa methemoglobinotwórczo. Objawami zatrucia N-metyloaniliną u ludzi są: sinica, utrudniony oddech, osłabienie. W teście Amesa ze szczepami Salmonella Typhimurium: TA97, TA1O2, TA1535 i TA1537 oraz w teście z Escherichia coli z frakcją metaboliczną i bez frakcji metabolicznej S9 nie wykazano działania mutagenneego N-metyloaniliny. W testach w warunkach in vitro N-metyloanilina nie indukowała nieplanowej syntezy DNA, powodowała natomiast aberracje strukturalne chromosomów. W dostępnym piśmiennictwie nie ma danych na temat rakotwórczego działania N-metyloaniliny oraz jej wpływu na rozród i rozwój potomstwa. Wartości normatywów higienicznych N -metyloaniliny w innych państwach kształtują się do 2,25 mg/m W SCOEL zaproponowano przyjęcie wartości OEL na poziomie 0,89 mg/mą wartości krótkoterminowej na poziomie 2,2 m/m3. W Polsce zaproponowano pozostawieni tych-czasowej wartości najwyższego dopuszczalnego stężenia (NDS) N-metyloanihny w powietrzu środowiska pracy na poziomie 2 mg/m oraz jęcie stężenia 4 mg/m3 za wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Z uwagi na właściwości methemoglobinotwórcze związku proponuje się przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym 4 na poziomie 2% MetHb. Normatyw N-metyloaniliny oznakowano literami „Sk” oznaczaj substancje wchłaniające się przez skórę.
EN
N-Methylaniline (NMA) is a colorless, oily liquid with ammonia-like odor. It is used as a solvent in the industry. N-Methylaniline is identified as a methemoglobin inducer. Methemoglobinemia is characterized by cyanosis, dizziness, shortness of breath, headache, dyspnea and weakness. There are no reports of human poisoning with N-methyaniline in available references. LD per os for rats is 700 - 800 mg/kg body weight. Data on sub acute and chronic toxicity are very limited. N -Methylaniiine is not a mutagenic agent, in the Ames test with Salmonella typhimurium TA97, TA1O2, TA1535 and TA1537 and Escherichia coli in the absence or presence of S9 mix. N-Methylaniline induced structural chromosomal aberrations did not induce unscheduled DNA synthesis in in vitro testes. There are no data on carcinogericity, reproductive or developmental toxicity. ACGIH has recommended TWA 2.2 mg/m and „ notation; SCOE L-TWA of 0.89 mg/m ST 2.2 mg/m and „Skin” notation. The Expert G for Chemical Agents has recommended TTWA of 2 mg/m3 and STEL of 4 mg/m3 and „Skin”notation for a substance absorbed through the skin.
EN
This work present a novel approach to track a specific speaker among multiple using the Minimum Variance Distortionless Response (MVDR) beamforming and fuzzy logic ruled based classification for speaker recognition. The Sound sources localization is performed with an improve delay and sum beamforming (DSB) computation methodology. Our proposed hybrid algorithm computes first the Generalized Cross Correlation (GCC) to create a reduced search spectrum for the DSB algorithm. This methodology reduces by more than 70% the DSB localization computation burden. Moreover for high frequencies Sound sources beamforming, the DSB will be preferred to the MVDR for logic and power consumption reduction.
PL
Kadm (Cd) jest białym metalem o niebieskawym odcieniu. Tworzy szereg związków, występując w nich wyłączne w 2+ stopniu utlenienia. Związki kadmu są w rożnym stopniu rozpuszczalne w wodzie – od dobrze rozpuszczalnych (np.: octan, chlorek, siarczan) do praktycznie nierozpuszczalnych (np.: tlenek, siarczek). Kadm jest stosowany obecnie głownie do produkcji elektrod w akumulatorach w postaci CdO (79%) oraz jako pigment w wyrobach ceramicznych, tworzywach sztucznych i szkle, głownie w postaci siarczanu i selenku (11%), a także wchodzi w skład powłok antykorozyjnych (7%), stabilizatorów polimerów (2%) i stopów (1%). Do grup największego ryzyka zalicza się pracowników zatrudnionych przy: produkcji akumulatorów niklowo-kadmowych, stopów, pigmentów kadmowych i barwieniu tworzyw sztucznych pigmentami, a także pracowników hut metali nieżelaznych oraz spawaczy tnących metale powleczone antykorozyjną warstwą kadmu. W 2007 r. według danych Głównej Inspekcji Sanitarnej 52 osoby były zatrudnione na stanowiskach pracy, gdzie stężenia kadmu przekraczały wartość najwyższego dopuszczalnego stężenia (NDS) wynoszącą 0,01 mg/m3. Kadm ulega wchłanianiu z płuc i z przewodu pokarmowego. U ludzi wydajność wchłaniania z przewodu pokarmowego wynosi około 4 ÷ 6%. Prawie 5 ÷ 20% wdychanego kadmu ulega deponowaniu w płucach. Kadm ulega kumulacji w wątrobie i w nerkach (około 40 ÷ 80 puli ustrojowej) w formie związanej z metalotioneiną. Stężenie kadmu w korze nerkowej jest większe niż w części rdzennej. Eliminacja kadmu z ustroju jest procesem powolnym. Biologiczne okresy półtrwania kadmu we krwi wynosiły po zakończeniu narażenia zawodowego 75 ÷ 130 dni dla pierwszej fazy i około 16 lat dla drugiej fazy. Za narządy krytyczne toksycznego działania kadmu i jego związków nieorganicznych na ludzi uznano nerki i płuca, na podstawie wyników badań populacji narażonych. Skutkiem krytycznym działania kadmu na nerki jest wzmożone wydalanie w moczu białek niskocząsteczkowych, natomiast w przypadku działania na płuca – działanie rakotwórcze. Prawdopodobieństwo wystąpienia objawów zaburzeń czynności nerek u ludzi jest zależne od wielkości stężenia kadmu w korze nerki. To ostatnie stwierdzenie odnosi się jedynie do nerki zdrowej, w której ma miejsce proces kumulacji kadmu. Można przyjąć, że stężenie krytyczne kadmu w korze nerkowej wynosi około 200 mg/kg kory nerkowej. Wartość ta została obecnie powszechnie zaakceptowana w odniesieniu do populacji narażonej w środowisku pracy. Wyniki badań przeprowadzonych u osób narażonych na kadm w środowisku pracy wykazały, że stężenie progowe kadmu w moczu, przy którym stwierdzano wzmożone wydalanie w moczu takich białek niskocząsteczkowych, jak β2-M czy białko wiążące retionol (RBP) wynosiło 5 ÷ 10 μg/g kreatyniny. Stwierdzono, że występowanie skutków związanych ze stężeniem kadmu w moczu 10 μg/g kreatyniny może prowadzić do szybszego, niż związanego z wiekiem, osłabienia czynności nerek w postaci zmniejszenia szybkości przesączania kłębuszkowego. W przeszłości przeważał pogląd, że wzmożone wydalanie białek niskocząsteczkowych z moczem jest objawem nieodwracalnym, występującym także po przerwaniu narażenia. W wyniku badań pracowników przewlekle narażonych na kadm stwierdzono, że gdy mikroproteinuria była umiarkowana (β2-M w moczu > 300 i < 1500 μg/g kreatyniny), a wartości stężeń kadmu w moczu (Cd-U) nie przekraczały w przeszłości 20 μg/g kreatyniny, to objaw ten był odwracalny po przerwaniu pracy w narażeniu. Międzynarodowa Agencja Badań nad Rakiem (IARC) uznała w 1993 r. kadm za czynnik rakotwórczy dla ludzi (grupa 1). Wniosek ten został oparty głownie na zależności między skumulowanym narażeniem na kadm i częstością występowania nowotworów płuc w kohorcie pracowników zatrudnionych w zakładzie odzyskiwania kadmu w Stanach Zjednoczonych. Wyniki tych badań były krytykowane, głownie ze względu na nieuwzględnienie wpływu jednoczesnego narażenia na arsen. W związku z tym uważa się, że dowody działania rakotwórczego kadmu u ludzi są słabe, a więc kadm powinien być raczej zaliczany do grupy czynników prawdopodobnie rakotwórczych dla człowieka. Wniosek taki jest zgodny z klasyfikacją działania rakotwórczego kadmu w: Unii Europejskiej (grupa 2.), Amerykańskiej Agencji Ochrony Środowiska (US EPA, grupa B1) oraz Amerykańskiej Konferencji Rządowych Higienistów Przemysłowych (ACGIH, grupa A2). Według US EPA ryzyko jednostkowe wynosi 0,0016. Proponowana wartość najwyższego dopuszczalnego stężenia (NDS) dla kadmu i jego związków nieorganicznych wynosi 0,01 mg Cd/m3 dla pyłów i dymów oraz 0,002 mg/m3 dla frakcji respirabilnej. W propozycji tej uwzględniono skutki działania kadmu na czynność nerek oraz możliwe jego działanie rakotwórcze. Wyniki badań populacji narażonych zawodowo na kadm pozwalają stwierdzić, że objawy wzmożonego wydalania białek niskocząsteczkowych, na skutek kumulacji kadmu w korze nerkowej i zaburzeń resorpcji zwrotnej w kanalikach nerkowych, występują już w przypadku skumulowanego narażenia rzędu 400 ÷ 500 μg/m3 razy lata pracy. Nie są to jeszcze objawy szkodliwe, jednak w przypadku kontynuowania nadmiernego narażenia mogą przyjąć charakter nieodwracalny i prowadzić do zmniejszenia szybkości filtracji kłębuszkowej. Utrzymywanie stężeń kadmu w powietrzu poniżej proponowanych wartości NDS powinno zabezpieczyć pracowników przed osiągnięciem krytycznego stężenia kadmu w korze nerek w ciągu 40 lat pracy. Przyjmując wartość ryzyka jednostkowego na poziomie 1,8 ・ 10-3 i 40 lat pracy, obliczamy całożyciowe ryzyko wystąpienia dodatkowych nowotworów płuc w wyniku narażenia na kadm o stężeniu 10 μg/m3 , które wynosi 2,25 ・ 10-3. Ryzyko to jest o prawdopodobnie zawyżone, gdyż podstawą wartości ryzyka jednostkowego były dane, w których nie uwzględniono dodatkowego wpływu arsenu. Proponuje się ponadto ustalenie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) kadmu i jego związków nieorganicznych wynoszące 5 μg Cd/l krwi i 5 μg Cd/g kreatyniny w moczu. Wykonywanie oznaczeń kadmu w moczu pozwoli na: ocenę narażenia w przeszłości, zapobieganie nadmiernej kumulacji tego pierwiastka w nerkach i zapobieganie wystąpieniu szkodliwych skutków jego działania. Stężenie kadmu we krwi stanowi marker aktualnego narażenia. Celowe jest uzupełnianie podanej wartości DSB (Cd-B i Cd-U) pomiarem markerów wczesnych skutków działania kadmu. Szczególnie istotny jest pomiar stężenia s2-mikroglobiliny i białka wiążącego retinol (RBP) w moczu.
EN
Cadmium is a silver-white metal, oxidation state +2. Of the many inorganic cadmium compounds, several are quite soluble in water (e.g. cadmium acetate, chloride, and sulfate); cadmium oxide and cadmium sulfide are almost insoluble. The use of cadmium compounds falls into five categories: active electrode materials in nickel-cadmium batteries (79%); pigments used mainly in plastics, ceramics, and glasses (11%); coatings on steel and some nonferrous metals (7%); stabilizers for polymers (2%), and component of various specialized alloys (1%). Most exposure to cadmium compounds in the working environment occurs through inhalation among people manufacturing nickel- cadmium batteries or pigments. High acute inhalation exposure may occur among workers welding cadmium-plated materials or using silver-cadmium solder. In 2007, according to the State Sanitary Inspection, 52 persons were employed in Poland at cadmium concentrations in the air exceeding the occupational exposure limit of 0.01 mg/m3. Cadmium is absorbed from the lungs and the gastrointestinal tract. In humans, on average, 4-6% of the total oral intake is absorbed. Between 5 and 20% of inhaled cadmium is deposited in the lungs. Cadmium is mainly stored in the liver and kidneys (about 40 – 80 % of the body burden) bound to metallothionein. Elimination is normally slow. Biological half-times after cessation of occupational exposure were 75-130 days during the first phase and to about 16 years during the second phase of elimination. Long-term occupational exposure to cadmium causes severe chronic effects, predominantly in the lungs and kidneys. The kidney is the critical organ. The accumulation of cadmium in the renal cortex leads to renal tubular dysfunction with impaired reabsorption of proteins, glucose, and amino acids. An increase of low molecular weight proteins in urine is a characteristic sign of tubular dysfunction. There is evidence that long-term occupational exposure to cadmium may contribute to the development of cancer of the lung. Impaired tubular reabsorption of low-molecular weight proteins or increased glomerular permeability occurred mainly when cadmium levels in urine exceeded 10 –15 μg/g creatinine corresponding to the renal cortex concentration of about 200 mg/kg. For a long time tubular proteinuria was considered irreversible. Experimental and fields data suggested, however, that the persistence of this kind of proteinuria depended on the intensity of cadmium exposure as well as the severity of cadmium-induced renal tubular changes. In a study on workers chronically exposed to cadmium when the microproteinuria was mild ( β2-M-U > 300 and < 1500 μg/g creatinine) and historical Cd-U values never exceeded 20 μg/g creatinine, there was an indication of a reversible tubulotoxic effect of cadmium. According to IARC there was sufficient evidence to classify cadmium and cadmium compounds as human carcinogens ( group I). This assessment to a great extent depended on the significant relation between the risk of lung cancer and estimated cumulative exposure to cadmium in an analysis of mortality among a cohort of workers from a single cadmium recovery plant in the USA. These findings were criticized mainly because there was no control for exposure to arsenic. The results of a later reevaluation suggest that the evidence for cadmium as a human carcinogen is rather weak, and thus classifying cadmium as probably carcinogenic to humans would be more appropriate. This conclusion complies with the EC ( carcinogenic category 2), US EPA ( category B1) and ACGIH ( category A2) classifications. According to US EPA the unit risk is 0.0016. On the basis of the results of epidemiological examinations the MAC values for cadmium and its inorganic compounds were established at 0.01 mg/m3 and 0.002 mg/m3 for inhalable and respirable fractions, respectively. Dose-response analyses showed increased incidence of tubular proteinuria when the cumulative cadmium exposure index was greater than 400-500 μg/m3 x years corresponding to 40 – 50 years of exposure to 0.010 mg/m3. The calculated risk of additional lung cancer as a result of 20-year exposure to 0.010 mg/m3 is to 2.25 x 10-3. The proposed admissible levels of in urine ( Cd-U) and in blood (Cd-B) are 5 μg/g creatinine and 5 μg/l, respectively. The level of Cd-B can be considered an indicator of current exposure, whereas Cd-U, in absence of renal damage , reflects the cadmium body burden. Measurements of β2-microglobulin or retinol binding protein in urine can be used to assess the effects of cadmium on renal function.
EN
Latest algorithm solutions for sound source localization have dramatically increased their computation burden. This paper proposes a novel hybrid algorithm with the ability to adapt its search spectrum based on target movement; we also show some studies and metrics to analyze its implementation constraints and remark its advantages over previous solutions. The proposed algorithm provides a good balance between processing power and real-time execution; our approach combines the General Cross Correlation (GCC) with the Delay and Sum Beamforming (DSB) algorithm, such that, less than 50% of thee DSB computation is necessary to locate the sound source.
9
Content available 2-Metoksyetanol
PL
2-Metoksyetanol (2-ME) jest bezbarwną cieczą o łagodnym, przyjemnym zapachu i gorzkim smaku stosowaną w przemyśle chemicznym, metalurgicznym, maszynowym, elektronicznym, meblowym, tekstylnym, skórzanym i kosmetycznym. 2-Metoksyetanol jest rozpuszczalnikiem acetylocelulozy i nitrocelulozy, żywic naturalnych i syntetycznych, chlorokauczuku, farb, lakierów, politur i atramentów. Używa się go również przy produkcji filmów fotograficznych i w procesach fotolitograficznych (np. przy wytwarzaniu półprzewodników). 2-Metoksyetanol jest stosowany także jako utrwalacz przy produkcji perfum, płynnych mydeł i innych kosmetyków. W 2000 r. nie zanotowano w przemyśle polskim narażenia pracowników na działanie 2-metoksyetanolu o stężeniach, które przekraczałyby obowiązującą wartość NDS ustaloną na poziomie 15 mg/m3. Również wg danych Głównej Inspekcji Sanitarnej takich przekroczeń w 2007 r. nie było. Zatrucia ostre 2-metoksyetanolem u ludzi występują rzadko i są związane ze spożyciem 2-metoksyetanolu zamiast alkoholu etylowego. Występujące z opóźnieniem objawy zatrucia 100 ml 2-metoksyetanolu to: zaburzenia świadomości, nudności, wymioty, ogólne osłabienie, bezład, zwolnienie oddechu i znaczna kwasica metaboliczna. Po przewlekłym narażeniu na działanie 2-metoksyetanolu o stężeniu 12 mg/m3 u 26% pracowników obserwowano zaburzenia hematologiczne w postaci niedokrwistości. Na podstawie wyników badań epidemiologicznych wykazano niekorzystny wpływ 2-metoksyetanolu na rozrodczość i rozwój płodów. Narażenie mężczyzn na 2-metoksyetanol o stężeniach 17 ÷ 26 mg/m3 powodowało zmniejszenie wielkości jąder. U kobiet narażonych na 2-metoksyetanol w pierwszym trymestrze ciąży stwierdzano 2- ÷ 3-krotny wzrost ryzyka częstości wystąpienia samoistnych poronień. U noworodków obserwowano nasilenie częstości występowania: zaburzeń kostnienia, wad rozwojowych żeber i układu sercowo-naczyniowego oraz rozszczepu podniebienia, a także wad mnogich. Na podstawie wartości DL50 wynoszącej 2370 ÷ 3400 mg/kg m.c. ustalonej dla szczurów po dożołądkowym podaniu 2-metoksyetanolu, związek nie został zaklasyfikowany jako substancja szkodliwa. Zarówno krótkotrwałe, jak i wielokrotne narażenie zwierząt na 2-metoksyetanol powodowało podobne skutki działania obserwowane u ludzi, tj. zaburzenia hematologiczne i zaburzenia płodności. 2-Metoksyetanol nie wykazywał działania mutagennego, genotoksycznego i rakotwórczego. Po narażeniu ciężarnych samic szczurów i myszy w okresie organogenezy na 2-metoksyetanol o stężeniu 31 mg/m3 nie obserwowano działania embriotoksycznego i teratogennego. Po narażeniu na działanie związku o większych stężeniach (155 ÷ 310 mg/m3) obserwowano zwiększenie resorpcji płodów oraz wady rozwojowe (opóźnienie kostnienia, zaburzenia sercowo-naczyniowe, wady rozwojowe żeber i ogona). Całkowita resorpcja płodów wystąpiła po narażeniu szczurów na 2-metoksyetanol o stężeniu 620 lub 930 mg/m3. Działanie embriotoksyczne i teratogenne 2- -metoksyetanolu na zwierzęta obserwowano także po narażeniu zwierząt drogą dożołądkową, dożylną i na skórę. 2-Metoksyetanol dobrze wchłania się w drogach oddechowych (retencja w płucach wynosi około 80%). Ciekły 2-metoksyetanol bardzo dobrze wchłania się przez skórę, a jego metabolizm przebiega dwoma drogami przez enzymatyczne utlenianie do 2-metoksyacetaldehydu i kwasu 2-metoksyoctowego(2-MAA) oraz przez demetylację do glikolu etylenowego, który utlenia się do kwasu glikolowego. Głównym metabolitem związku jest kwas 2-metoksyoctowy wydalany z moczem. Półokres eliminacji 2-metoksyetanolu i jego metabolitów wynosi około 77 h, co wskazuje na możliwość kumulacji związku w organizmie.Podstawą do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) było hematotoksyczne działanie 2-metoksyetanolu obserwowane u pracowników narażonych na działanie związku w przemyśle. Na tej podstawie zaproponowano zmniejszenie obowiązującej w Polsce wartości najwyższego dopuszczalnego stężenia (NDS) z 15 do 3 mg/m3. Wartość dopuszczalnego stężenia w materiale biologicznym (DSB) ustalono na poziomie 8 mg kwasu 2-metoksyoctowego (MAA)/g kreatyniny w moczu zebranym pod koniec drugiego tygodnia pracy. Normatyw oznakowano literami „Sk” (wchłania się przez skórę) i „Ft” (substancja działająca toksycznie na płód). Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh), gdyż związek nie wykazywał działania drażniącego w badaniach na zwierzętach.
EN
2-Methoxyethanol (2-ME) is a colorless liquid with a mild odor. 2-Methoxyethanol is used as a solvent in many products (e.g. dyes, resins, lacquers, inks, nitrocellulose, acethylcellulose). It has been used as a perfume fixative and a jet fuel de-icing additive. Industries using 2-methoxyethanol has included the printing, painting, furniture finishing, coating, and leather industries. 2-ME is used in photolithographic and photographic processes. No people have been expose in Poland to 2-methoxyethanol concentration in the air exceeding the TWA value which is 15 mg/m3 (data from 2000-2007). Only limited information on the acute toxic effects of 2-methoxyethanol in human is available. These information come largely from case reports with accidental poisoning. In cases of unintentional ingestion of 2-ME (dose of 100 ml/man) muscular weakness, ataxia, nausea, vomiting and mental confusion and metabolic acidosis were apparent. Haematologic abnormalities have been noted in human (26% of workers) after inhalation exposure on 2-ME at the concentration of 12 mg/m3. Epidemiologic studies have demonstrated that 2-methoxyethanol at the concentration of 17 ÷ 26 mg/m3 caused reproductive and fetotoxic effects. The oral LD50 values for 2-methoxyethanol in rats were between 2370 and 3400 mg/kg of body weight. Short-term and repeated administration of 2-ME to animals resulted in haematologic abnormalities and reproduction consequences. There was no evidence for mutagenic, genotoxic and carcinogenic activity of 2-methoxyethanol. No observed embriotoxicity and teratogenic effects after exposure pregnant female rats and mice on 2-methoxyethanol (during organogenesis) at the concentration 31 mg/m3. Fetotoxic effects on rodent embryos after inhalation on 2-ME at the concentration 155 ÷ 930 mg/m3 have been reported. 2-Methoxyethanol is readily absorber through the skin, lungs, and gastrointestinal tract. The metabolic transformation of 2-ME gives two primary metabolites: 2-methoxyacetic acid (MAA) and 2-methoxyacethyl glicine. A major portion of a dose is eliminated as a MAA in urine. The excretion of MAA is slow, with a half-life of about 77 h in man. The MAC-TWA values was calculated on the basis of haematotoxic effect in human. The Expert Group for Chemical Agents suggest reducing the MAC-TWA (OEL) value accepted in Poland from 15 mg/m3 to 3 mg/m3. No MAC-STEL has been recommended. The value of BEI is proposed (8 mg of 2-methoxyacetic acid per gram of urinary creatinine). Notation “Sk” (substance absorbed through the skin) and “Ft” (fetotoxicity) are recommended.
10
Content available Buta-1,3-dien
PL
Buta-1,3-dien w temperaturze pokojowej jest gazem stosowanym do produkcji żywic termoplastycznych elastomerów kauczuku i lateksu, gdyż ten wchłania się głównie w układzie oddechowym, a następnie jest metabolizowany do monoepoksydu 1,2-epoksy-3-butenu i diepoksydu 1,2,3,4-diepoksybutanu, a po sprzężeniu z glutationem wydalany z moczem. Z danych Centralnego Rejestru o Narażeniu na Substancje o Działaniu Rakotwórczym lub Mutagennym w Łodzi wynika, że w 2005 r. liczba narażonych na ten związek w Polsce wynosiła około 300 osób i dodatkowo około 520 narażonych na substancje ropopochodne, których działanie rakotwórcze jest uzależnione od buta-1,3-dienu. Buta-1,3-dien o małych stężeniach jest łagodnym czynnikiem narkotycznym dla ludzi, natomiast u zawodowo narażonych na ten związek stwierdzano objawy jego działania drażniącego na błony śluzowe oczu i dróg oddechowych. Według danych stacji sanitarno-epidemiologicznych w 2007 r. nie zanotowano w przemyśle polskim narażenia pracowników na buta-1,3-dien o stężeniu 10 mg/m3, czyli przekraczającym obowiązującą wartość NDS (dane niepublikowane, Główny Inspektor Sanitarny 2007). Buta-1,3-dien jest substancją o niewielkiej toksyczności ostrej dla zwierząt (wartość LC50 dla szczurów wynosi 270 000 mg/m3). Substancja ta jest mutagenna i genotoksyczna, może powodować uszkodzenia materiału genetycznego komórek somatycznych i komórek płciowych. Wykazano, że buta-1,3-dien jest czynnikiem rakotwórczym dla myszy B6C3F1 i szczurów. Istnieją również dowody wskazujące, że narażenie zawodowe na buta-1,3-dien jest związane z ryzykiem nowotworów układu limfohematopoetycznego. Według klasyfikacji IARC buta-1,3- -dien jest zaliczany do grupy 2A, czyli czynników prawdopodobnie rakotwórczych dla ludzi, a wg klasyfikacji ACGIH do grupy A2, czyli substancji podejrzanych o działanie rakotwórcze dla ludzi. W Polsce buta-1,3-dien jest zaklasyfikowany do Kat. 1. czynników rakotwórczych i do Kat. 2. czynników mutagennych. Buta-1,3-dien nie powoduje zaburzeń płodności, a jego działanie teratogenne ujawniło się tylko wówczas, gdy zastosowane dawki były toksyczne dla matek. Eksperci ACGIH (2006) zalecają przyjęcie biologicznych wskaźników 8-godzinnego narażenia zawodowego na buta-1,3-dien o stężeniu 4,42 mg/m3. Wskaźnikami tymi są: 1,2-dihydroksy-4- -N-acetylocysteinyl)-butan w moczu i addukty hemoglobiny N-1 i N-2-(hydroksybutenyl)-walina we krwi. Narażenie powyższe odzwierciedla stężenie 1,2-dihydroksy-4-(N-acety-locysteinyl)-butanu równe 2,5 mg/l mierzone na zakończenie zmiany roboczej, a narażenie w okresie ostatnich 120 dni pokazuje stężenie mieszaniny adduktów na poziomie 2,5 pmol/gHb. Na podstawie oceny ryzyka wystąpienia nowotworów układu limfohematopoetycznego proponuje się przyjęcie wartości najwyższego dopuszczalnego stężenia (NDS) buta-1,3-dienu w powietrzu środowiska pracy na poziomie 4,4 mg/m3 oraz następujące wskaźniki dopuszczalnego narażenia w materiale biologicznym (DSB): – 2,5 mg/l 1,2-dihydroksy-4-(N-acetylocysteinyl)-butanu w moczu mierzone na zakoń-czenie zmiany roboczej – 2,5 pmol/gHb – addukty hemoglobiny N-1 i N-2-(hydroksybutenyl)-walina we krwi obrazujące narażenie w okresie ostatnich 120 dni. Nie znaleziono podstaw do wyznaczania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) buta-1,3-dienu.
EN
Buta-1,3-diene is a colorless gas. It is produced in large volumes and used in manufacturing thermoplastic resins, elastomers and synthetic rubber. Exposure by inhalation is the dominant pathway for exposure. Occupational exposure to this substance is associated with the induction of leukemia. The major metabolites of buta-1,3-diene are: 1,2-epoxy-3-butene (EB), 1,2,3,4- -diepoxybutavne (DEB) and 1,2-dihydroxy-3,4-epoxybutane (EB-diol). Buta-1,3-diol and its metabolites have been mutagenic and clastogenic in numerous in vivo and in vitro tests. Buta-1,3-diene is genotoxic in somatic and germ cells of laboratory rodents. This substance is terato-genic in animals at doses toxic to mothers. Long-term exposure to buta-1,3-diene in relatively low concentrations was associated with ovarian atrophy in mice, whereas in greater concentra-tions with atrophy of testes in male mice. Buta-1,3-diene is a carcinogen in mice inducing tu-mors in multiple sites. The Expert Group recommended, on the basis of the results of a human carcinogenicity study, a TLV value for buta-1,3-diene of 4.4 mg/m3. The BEI indicates an exposure level associated with exposure to 4.4 mg/m3: 1,2-dihydroxy-4-(N-acetylcysteinyl)-butane in urine 2.5 mg/l (end of shift), a mixture of N-1 and N-2-(hydroxybutenyl(valine) hemoglobin adducts in blood – 2.5 pmol/gHb. Carcinogen Cat.1 and Muta. Cat. 2 notations are also recommended.
11
Content available 2-Toliloamina
PL
2-Toliloamina (o-toluidyna, CAS: 95-53-4) jest bezbarwną lub bladożółtą oleistą cieczą przypo-minającą zapachem anilinę i otrzymywaną przez redukcję nitrotoluenu. 2-Toliloaminę stosuje się m.in. do wytwarzania barwników, chemikaliów, farmaceutyków i pestycydów. Narażenie zawodowe może być związane z jej produkcją i wykorzystaniem. Skutkiem ostrego zatrucia 2-toliloaminą są: methemoglobinemia, hematuria, podrażnienie nerek i pęcherza moczowego oraz zatrzymanie moczu. Według danych z piśmiennictwa 30-minu-towe narażenie na 2-toliloaminę o stężeniu 176 mg/m3 jest przyczyną wystąpienia objawów ostrego zatrucia, natomiast narażenie na 2-toliloaminę o stężeniu 44 mg/m3 było przyczyną wystąpienia objawów zatrucia określanych jako łagodne. Zatruciom przewlekłym towarzyszy: wzrost stężenia methemoglobiny we krwi, hematuria oraz zmiany w pęcherzu moczowym prowadzące do powstania raka tego narządu. W dostępnym piśmiennictwie nie znaleziono informacji na temat badań epidemiologicznych, w których zawodowe narażenie dotyczyłoby wyłącznie 2-toliloaminy. Toksyczność ostra 2-toliloaminy dla zwierząt jest mała. Wartość DL50 tej substancji mieści się w granicach 150 ÷ 840 mg/kg masy ciała. Jednorazowe narażenie zwierząt na 2-toliloaminę w dużych dawkach powoduje: wzrost poziomu methemoglobiny, sinicę, anemię i zmiany w śledzionie. Wielokrotne narażenie szczurów na 2-toliloaminę podawaną drogą dożołądkową po-wodowało: zahamowanie przyrostu masy ciała zwierząt, zmiany w błonie śluzowej pęcherza moczowego (proliferacja, wakuolizacja, mataplazja), tworzenie depozytów barwnika w śle-dzionie, wątrobie i nerkach oraz zwiększoną liczbę padłych zwierząt. Objawom tym towarzy-szyły: methemoglobinemia, sinica, erytropenia i retikulocytoza. Na podstawie wyników badań mutagenności 2-toliloaminy z użyciem testów bakteryjnych wykazano, że związek ten wykazuje działanie mutagenne jedynie w obecności frakcji S9. Wyniki badań nad genotoksycznością dowodzą, że 2-toliloamina jest związkiem genotoksycznym powodującym m.in. mutacje genowe, aberracje chromosomowe, wymianę chromatyd siostrzanych i pękanie nici DNA. 2-Toliloamina indukuje powstawanie takich nowotworów u zwierząt, jak: naczyniaki, mięsaki, włókniakomięsaki, włókniakogruczolaki i brodawczaki różnych narządów. Na podstawie wy-ników badań nad rakotwórczym działaniem 2-toliloaminy związek ten został zaklasyfikowany w Unii Europejskiej do kategorii 2. W Polsce 2-toliloamina jest zaliczana do 2. kategorii rako-twórczości. 2-Toliloamina wchłania się przez skórę i płuca. Metabolizowana jest na drodze hydroksylacji i N-acetylacji. Powstałe metabolity (głównie 4-amino-m-krezol i N-acetylo-amino-m-krezol) ule-gają sprzęganiu z kwasem siarkowym oraz glukuronowym i w tej postaci są wydalane z moczem. Mechanizm działania toksycznego 2-toliloaminy jest związany z zahamowaniem aktywności monooksygenaz i zaburzeniem procesu detoksykacji. Powstałe w wyniku metabolizmu hy-droksylowe pochodne wykazują działanie methemoglobinotwórcze. Narażenie zawodowe na 2-toliloaminę w połączeniu z innymi aminami aromatycznymi powo-duje raka pęcherza moczowego. Zaproponowano przyjęcie stężenia 3 mg/m3 2-toliloaminy za wartość najwyższego dopuszczalnego stężenia (NDS) związku. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia (NDSCh) 2-toliloaminy. Za wartość dopuszczalnego stężenia w materiale biologicznym (DSB) przyjęto poziom methemoglobiny (MetHb) wynoszący 2%. Proponuje się oznakowanie związku literami: „Sk”, „I” oraz Rakotw. Kat. 2.
EN
2-Tolyloamine (o-toluidine) is a light yellow liquid, slightly soluble in water and soluble in al-cohol and ether. o-Toluidine and its hydrochloride have been mostly used as intermediates in manufacturing a variety of dyes, rubber chemicals, pharmaceuticals and pesticides. o-Toluidine is been absorbed via the respiratory tract and skin. The body rapidly metaboliz-es o-toluidine and the metabolites are excreted largely in the urine. Oral LD50 in animals is 150-840 mg/kg bw. In animal studies, short-term administration of o-toluidine results in cyano-sis, reticulocytosis, anaemia, methaemoglobinaemia, bladder haemorrhage and vacuolization and proliferation of bladder epithelial cells. Chronic exposure results in incidences of vascular tumors (hemangiosarcomas and hemangiomas of the abdominal viscera and urinary bladder). o-Toluidine (hydrochloride) is carcinogenic in mice and rats after oral administration, produc-ing a variety of malignant tumors. o-Toluidine and its hydrochloride produces increased num-bers of chromosomal aberrations, sister-chromatid exchanges and unscheduled DNA. Human exposure to chemicals including o-toluidine in the dyestuffs industry and more recently in the rubber industry has been reported to be associated with an increased incidence of bladder cancer. The European Union has classified o-toluidine as category 2, i.e., a substance considered as car-cinogenic to humans. This classification is obligatory in Poland, too. The Expert Group has recommended an OEL-TWA of 3 mg/m3 and a biological exposure index (BEI) of 2% methaemoglobinaemia.
12
Content available 2-Furaldehyd
PL
2-Furaldehyd jest bezbarwną, oleistą, palną cieczą o zapachu podobnym do zapachu migdałów, określanym też jako podobnym do zapachu benzaldehydu. Około 40% produkowanego 2-furaldehydu jest zużywane do produkcji żywic fenolowych i wyrobów ogniotrwałych. 2-Furaldehyd jest także używany w przemyśle rafineryjnym jako selektywny rozpuszczalnik smarów olejowych. Jest też prekursorem podczas produkcji furanu, alkoholu furfurylowego, tetrahydrofuranu i ich pochodnych. W przemyśle petrochemicznym, produkcji żywic i polimerów oznaczono 2-furaldehyd w powietrzu środowiska pracy o stężeniach < 8 mg/m3 (stężenie średnie ważone dla 8-godzinnej zmiany roboczej). Podczas produkcji materiałów ogniotrwałych 20% oznaczonych stężeń przekraczało 40 mg/m3. W Polsce w 2000 r. nie stwierdzono osób narażonych na 2-furaldehyd o stężeniu powyżej wartości NDS wynoszącej 10 mg/m3. Głównymi drogami narażenia na 2-furaldehyd w warunkach pracy zawodowej są układ oddechowy i skóra. Pary 2-furaldehydu działają drażniąco na oczy, drogi oddechowe i skórę. Opisano występowanie podrażnienia oczu i górnych dróg oddechowych u ludzi zatrudnionych przy operacjach szlifierskich narażonych na pary 2-furaldehydu o stężeniach 20 ÷ 64 mg/m3. Podrażnienie przejawiało się pieczeniem oczu, swędzeniem, łzawieniem, zaczerwienieniem oraz podrażnieniem błony śluzowej nosa: uczuciem zatkania, wysuszeniem, bolesnością, a także krwawieniami z nosa oraz suchością w ustach i gardle. 2-Furaldehyd został zaklasyfikowany jako działający szkodliwie w kontakcie ze skórą oraz działający toksycznie przez drogi oddechowe i po połknięciu. U zwierząt obserwowano skutki miejscowego działania drażniącego 2-furaldehydu, a także działanie toksyczne na wątrobę. Eksperci IARC zaliczyli 2-furaldehyd do grupy 3., tzn. do grupy substancji nieklasyfikowanych jako rakotwórcze dla ludzi. Eksperci Unii Europejskiej zaklasyfikowali 2-furaldehyd do kategorii substancji o możliwym działaniu rakotwórczym na człowieka (Rakotw. Kat. 3) z przypisanym zwrotem rodzaju zagrożenia – ograniczone dowody działania rakotwórczego (R40). 2-Furaldehyd powoduje uszkodzenia DNA w warunkach in vitro, głównie w strukturach bogatych w reszty tyminy i adeniny (rejony A+T), prowadząc do destabilizacji dwuniciowej struktury DNA i do jednoniciowych pęknięć DNA. W warunkach in vitro 2-furaldehyd działał genotoksycznie na komórki ssaków, a także powodował wzrost liczby aberracji chromosomowych i mutacje genowe oraz zmiany w strukturze chromosomów w teście wymiany chromatyd siostrzanych. W Polsce wartość NDS 2-furaldehydu wynosi 10 mg/m3, a wartość NDSCh – 40 mg/m3. Nie opracowano dotychczas w Polsce dokumentacji uzasadniającej przyjęcie wartości normatywnych 2-furaldehydu. W światowych wykazach normatywów higienicznych w większości państw stężenia 2-furaldehydu wynoszą 8 ÷ 20 mg/m3. Za podstawę wyliczenia wartości NDS 2-furaldehydu przyjęto wyniki badań na chomikach narażanych drogą oddechową na 2-furaldehyd w warunkach narażenia podprzewlekłego. Za efekt krytyczny przyjęto podrażnienie błon śluzowych dróg oddechowych, a za narząd krytyczny – błonę śluzową nosa. Wartość NOAEL dla działania drażniącego przyjęto na poziomie 80 mg/m3. Przyjmując odpowiednie wartości współczynników niepewności, obliczono wartość NDS 2-furaldehydu równą 10 mg/m3. Ze względu na działanie drażniące związku ustalono, że wartość NDSCh 2-furaldehydu wynosi 25 mg/m3. Zaproponowano oznakowanie normatywu w wykazie literami „Sk” informującymi, że substancja wchłania się przez skórę. Absorpcja dermalna par 2-furaldehydu stanowi 20 ÷ 30% dawki zatrzymywanej po inhalacji. Absorpcja ciekłego 2-furaldehydu przez skórę wynosi 0,2 mg/cm2/h. Fakt, że skóra stanowi istotną drogę narażenia został potwierdzony wynikami badań nad metabolizmem 2-furaldehydu i w badaniach z udziałem ochotników. Ustalono wartość dopuszczalnego stężenia 2-furaldehydu w materiale biologicznym (DSB). Pomiar całkowitego stężenia kwasu 2-furanokarboksylowego w moczu pod koniec zmiany roboczej zaleca się do monitorowania biologicznego narażenia na furfural. Obliczono, że narażeniu na 2-furaldehyd o stężeniu 10 mg/m3 odpowiada wydalanie z moczem kwasu 2-furanokarboksylowego o stężeniu 250 mg/g kreatyniny.
EN
2-Furaldehyde is a colorless, oily liquid that turns reddish brown on exposure to light and air. Its odor is close to like that of benzaldehyde. It has had a wide variety of uses, such as a solvent, an ingredient of phenolic resins, a chemical intermediate, weed killer, fungicide, and flavoring agent. 2-Furaldehyde is used in solvent extraction processes in the petroleum refining industry. Furfural is an irritant of the eyes, mucous membranes, and skin. Irritation of eye and respiratory tract in human organism during occupational exposure to furfural vapor has been found in concentrations ranging 20 ÷ 64 mg/m3. Workers noted frequent nasal irritation as evidenced by stuffiness, dryness, or soreness, and occasional bloody nasal discharge, dryness of the mouth or throat. Furfural has a rather high acute toxicity in animals. The U.S. National Toxicology Program conducted a 2-year gavage study of furfural in which Fischer-344 male and female rats had received daily doses of 0, 30, or 60 mg/kg and B6C3F1 male and female mice received daily doses of 0, 50, 100, or 175 mg/kg. There was clear evidence of carcinogenic activity in male mice, some evidence of carcinogenic activity in female mice and male rats, and no evidence of carcinogenic activity of furfural in female rats. IARC has been classified 2-furaldehyde to group 3 as unclassifiable as to carcinogenicity in humans. In the European Union 2-furaldehyde has been classified as the substance which cause concern for human owing to possible carcinogenic effects but in respect of which the available information is not adequate for making a satisfactory assessment (category 3). Furfural was positive for the induction of chromosomal aberrations and sister-chromatid exchanges in cultured Chinese hamster ovary cells. In the inhalation subchronic study on hamsters the concentration 80 mg/m3 was identified as the nonobserved- adverse-effect level (NOAEL). The critical effect is irritation and the target organ is mucous membrane of the nose. Based on this data the Expert Group of Chemical Agent established the 8-hour TWA value of 10 mg/m3 and the STEL value of 25 mg/m3. Furfural is a substance for which biological exposure indices (BEIs) have been recommended: 250 mg 2-furanocarboxylic acid/g creatinine in urine collected in the end of the shift.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.