Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  DRASTIC index
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article introduces a groundwater vulnerability assessment model that utilises the fuzzy analytic hierarchy process (FAHP) in the Wadi AlHasa catchment, Jordan. The assessment takes into account both geomorphological and hydrogeological variables, employing a comprehensive methodology that integrates various parameters. To evaluate the catchment, the study employs remote sensing and Geographic Information System (GIS) techniques. The analysis of the digital elevation model enables the creation of a map illustrating the diverse geomorphology of the catchment. This geomorphology significantly influences drainage density, direction, and the spatial distribution and intensity of flash flood events. Moreover, the study develops and maps a fuzzy FAHP DRASTIC vulnerability index, which proves to be a valuable tool for assessing the susceptibility of groundwater resources to contamination. The unique feature of the index is its ability to incorporate uncertain or subjective data, providing a means to evaluate the significance of various influencing factors. This information serves as critical support for decision-making and management efforts geared towards safeguarding and enhancing groundwater resources. Within the study area, the DRASTIC vulnerability index values span from 0.08325 to 0.28409, with 18% of the site exhibiting a high vulnerability rate. Additionally, the article implements a managed aquifer recharge model (MAR), with 31% of the area falling into MAR classes. Among these, 22.1% are classified as a high MAR class, while 0.7% belong to a very high MAR class. These findings underscore the feasibility of MAR projects in regions with limited water resources.
EN
Surface and groundwater resources are two important sources in meeting agricultural, urban, and industrial needs. Random supply of surface water resources has prevented these resources from being a reliable source of water supply at all times. Therefore, groundwater acts as insurance in case of water shortage, and maintaining the quality of these resources is very important. On the other hand, studying vulnerability and identifying areas prone to aquifer pollution seems necessary for the development and optimal management of these valuable resources. Identifying the vulnerabilities of the aquifer areas to pollution will lead to a greater focus on preserving those areas. Therefore, groundwater quality assessment was performed in this study using the groundwater quality index (GQI), and groundwater vulnerability to pollution was assessed using the DRASTIC index. GQI is developed based on the values of six quality parameters (Na+, Mg2+, Ca2+, SO42-, Cl-, and TDS). The DRASTIC index is developed based on the values of seven parameters (depth to the water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, hydraulic conductivity). The zoning of both indexes has been done using geographic information system (GIS) software. The results show that the GQI of the region was about 93, and its DRASTIC index was about 86. Therefore, the quality of aquifer groundwater is excellent, and its vulnerability to pollution is low.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.