Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  DHW
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The study analyses the efficiency of a Solar Water Heating (SWH) system, potential financial savings and investment profitability. The analysis pertaining to the amount of energy generated by the collectors had been performed for the multi-family building within the span of two years. The efficiency of the system was determined by comparing the amount of energy from solar radiation incident on the surface of the collectors to the amount of energy generated by the collectors and fed to the existing Domestic Hot Water (DHW) system. The amount of energy generated by the collectors was approx. 70 GJ per year, at the efficiency of the SWH system equalling 36%. The best time for the operation of the system was the period from April to September, during which the share of generated for DHW amounted to 78%. It is reflected in the decreased consumption of gas by 6% throughout the year. Furthermore, based on the data about the efficiency and energy yield of the set of collectors, as well as data on insolation, the analysis was performed to determine the installation and operation costs and the depreciation period of the investigated SWH system.
PL
W artykule przedstawiono rozkład kosztów przygotowania ciepłej wody użytkowej (c.w.u.) poza sezonem grzewczym w trzech wybranych źródłach ciepła: zautomatyzowanego kotła węglowego z zasobnikiem c.w.u., kotła gazowego z zasobnikiem c.w.u. oraz powietrznej pompy ciepła. W obliczeniach uwzględniono sprawności analizowanych urządzeń oraz koszty dostarczania energii na terenie kraju. W rezultacie wyznaczono całkowity oraz jednostkowy koszt przygotowania c.w.u. poza sezonem grzewczym w zależności od liczby użytkowników i wybranego źródła ciepła.
EN
The article presents the distribution of the exploitation costs associated with the process of domestic hot water (DHW) preparation beyond the heating season, using three various heat sources: automated coal-fired boiler, gas boiler and air-source heat pump. The efficiency of the analysed equipment and averaged prices of energy supply in Poland were taken into account. In consequence, the total and per capita costs of the preparation of DHW beyond the heating season were determined depending on the number of users and the heat source.
PL
W artykule przedstawiono aspekt ekonomiczny wykorzystania różnych źródeł ciepła do podgrzewania ciepłej wody użytkowej (bez uwzględniania centralnego ogrzewania), w tym energii odnawialnej.
EN
In the article there was introduced economical aspect of DHW (domestic hot water) preparation with different heat sources (regardless central heating) including renewable energy.
PL
W ostatnich kilkunastu latach ceny mediów dostarczanych do odbiorców indywidualnych rosły w Polsce szybciej od średniej pensji. Wiele osób chce, lub jest zmuszona, ograniczyć rachunki za gaz, wodę i energię elektryczną, najlepiej bez równoczesnego pogorszenia odczuwalnego komfortu życia. W niniejszym artykule przedstawiono jak obliczać zapotrzebowanie na ciepło do podgrzewu ciepłej wody użytkowej i od czego to zapotrzebowanie zależy. Na przykładzie czteroosobowej rodziny podano konkretne wartości liczbowe. Omówiono również sposoby zmniejszenia zużycia wody i uzyskania ewentualnych oszczędności dzięki wykonaniu instalacji wody szarej lub deszczowej.
EN
In recent years the prices of media delivered to individual recipients in Poland have been increasing faster than the average salary. Therefore, many people want to, or are forced, to reduce bills for gas, water and electricity preferably without deterioration in the quality of life. This article shows how to calculate the heat demand for DHW and what are the factors that this heat demand depends on. The calculations performed for a family of four serve as an example. The article also discusses the ways to reduce water consumption and to obtain potential savings thanks to the installation of gray water or rainwater.
PL
Oprogramowanie Ansys Fluent jest stosowane w różnych dziedzinach nauki i techniki. Przedstawiono przykładowe zastosowania tego programu w analizach związanych z mechaniką płynów i wymianą ciepła. Pierwszy przykład dotyczy ustalonego przepływu ciepła w solarnej rurze próżniowej typu Heat Pipe. Przy pomocy Solar Model (funkcja zastosowanego oprogramowania) określono wpływ budowy wnętrza na efektywność pozyskiwania energii słonecznej poprzez szacowanie strat do otoczenia. Drugi przykład dotyczy obliczeń cieplno-przepływowych solarnego zasobnika ciepłej wody użytkowej. Określono wpływ strat do otoczenia, ruchu płynu i zmian temperatury wokół wężownicy solarnej na przekazywanie ciepła z układu solarnego. Wykorzystano skrypty autorski skrypt (User Defined Function ) do obliczeń strat z powierzchni zewnętrznej do otoczenia, zmiany czasu przepływu czynnika oraz symulacji pracy pompy obiegowej, jako bezstratnego transportu ciepła bez uwzględnienia zagadnień mechanicznych.Trzeci przykład dotyczy szacowania strat cieplnych z rur instalacji ciepłej wody użytkowej w zależności od średnicy i grubości ścianki rury, grubości izolacji, temperatury wody, prędkości przepływu, temperatury otaczających pomieszczeń. Wykorzystując analizę parametryczną zbadano 720 wariantów obliczeniowych, przy założeniu umiejscowienia polipropylenowych rur wewnątrz budynku.
EN
Ansys Fluent software is used in various fields of science and technology. Publication present examples of use of this software in studies related to fluid mechanics and heat transfer. The first example concerns about steady heat flow in solar vacuum tube Heat Pipe. Solar Model helped to determine the effect of device interiors construction on the effectiveness of solar energy gain by estimating external losses. Second example concerns about thermal calculation of flow from solar panel to hot water tank. Heat losses to the environment were estimated by factors: fluid motion and temperature changes around the solar coil to transfer heat from the solar system. The last example relates to estimating heat loss from hot water installations. The analysis was conducted for complex variables such as diameter and its wall thickness, insulation thickness, liquid temperature, flow rate and ambient temperature of the surrounding. Using parametric analysis 720 cases were calculated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.