Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 109

Liczba wyników na stronie
first rewind previous Strona / 6 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  DFT
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 6 next fast forward last
PL
Przedmiotem pracy jest charakterystyka procesu aktywacji cząsteczki tlenu molekularnego na solwatowanych wybranych metalach przejściowych (3d). W niniejszej pracy, korzystając metody DFT (ang. density functional theory), wykonano obliczenia kwantowo-mechaniczne, których celem było scharakteryzowanie struktury elektronowej sześciokoordynacyjnych kompleksów wodnych i acetonitrylowych o wzorach ogólnych [TM(H₂O)₆]n+ i [TM(CH₃CN)₆]n+, gdzie: n = 2, 3 oraz kompleksów z zaadsorbowaną na centrum metalicznym cząsteczką tlenu molekularnego: ([TM(H₂O)₅–O₂]n+ i [TM(CH₃CN)₅–O₂]n+), gdzie n = 2, 3. Do obliczeń wybrano jony metali przejściowych TM (ang. transition metal) z okresu czwartego: Co2+, Fe2+, Mn2+, Ni2+, Zn2+, Cu2+ oraz Cr3+. Na podstawie przeprowadzonych obliczeń stwierdzono, że każdy z analizowanych w pracy parametrów jest funkcją wprowadzonego metalu przejściowego. Co więcej efekt użytego metalu przejściowego na analizowane parametry (np. energetyka orbitali granicznych, rozmiar przerwy energetycznej, ładunki, itd.) przewyższa efekt użytego rozpuszczalnika (H₂O/CH₃CN).
EN
The subject of this research is the characterization of the activation process of the oxygen molecule on solvated selected transition metals (3d). In this study , using the Density Functional Theory, quantum-mechanical calculations were made, the purpose of which was to characterize the electronic structure of water and acetonitrile six-coordinated complexes with general formulas [TM(H₂O)₆]n+ and [TM(CH₃CN)₆]n+, where: n = 2, 3, and complexes with adsorbed at the metal center with an oxygen molecule ([TM(H₂O)₅–O₂]n+ i [TM(CH₃CN)₅–O₂]n+), where: n = 2, 3. The calculations were made using transition metal ions from the fourth period of periodic table: TM = Co2+, Fe2+, Mn2+, Ni2+, Zn2+, Cu2+ and Cr3+. Based on the calculations performed, it was found that each of the parameters analyzed in this work is a function of the introduced transition metal. Moreover, the effect of the transition metal used on the analyzed parameters (e.g. energetics of boundary orbitals, size of the energy gap, charges, etc.) exceeds the effect of the solvent used (H₂O/CH₃CN).
EN
Pentavalent niobium cation forms a stable yellow-colored binary complex with 6-chloro-3-hydroxy-7-methyl-2-(2’- thienyl)-4H-chromen-4-one (CHMTC) in the ratio of 1:2. The complex is quantitatively extractable into carbon tetrachloride from HClO4 solution maintained at pH 1.26–1.75 and strictly adheres to Beer’s law as verified by the Ringbom plot with an optimized range of determination as 0.385–1.211 ppm of Nb(V). The ligand-metal complex system shows good precision, accuracy, sensitivity, and selectivity and handles satisfactorily the analysis of several samples of varying complexity. The results are highly reproducible as confirmed by statistical data. The stability of the complex is theoretically confirmed with the help of HOMO-LUMO values and the energy gap [for CHMTC, ΔEgap = 3.62 V and for Nb(V)-CHMTC Complex, ΔEgap = 2.97 eV]. The reactivity descriptors were calculated for detailed computational study to probe into the chemical behavior of the studied ligand and its complex. Further, mapped electrostatic potential diagrams help in justifying the donor sites of CHMTC ligand which is in accordance with the analytical findings.
EN
Hydrogen peroxide (H2O2) is an efficient depressant for pyrite (FeS2) flotation. However, the depressing mechanism of H2O2 is not fully understood. In this paper, the depressing capacity of H2O2 for pyrite was examined by flotation tests. Results revealed that pyrite flotation could be inhibited by H2O2 at pH 6.4. The pyrite powder in H2O2 solution enhanced the release of O2 from H2O2. However, the O2 concentration in the solution was less than that of H2O2; thus, H2O2 is the major oxidant in the solution. Moreover, density functional theory calculations were performed to study the interactions between H2O2 and hydrated pyrite (100) surface. The H2O2 molecule tended to react with the pyrite surface to generate one S=O bond and an H2O molecule. The possible binding models of O2 molecules on the pyrite (100) surface were also studied for comparison. The O2 dissociation on the pyrite surface was more favorable than the adsorption of O2 as a whole. In addition, the orbital interaction in the S=O bond raised from the reaction of H2O2/O2 with the pyrite surface was also investigated by the density states analysis. These results provide some insights into the oxidizing effect of H2O2 in pyrite flotation.
EN
The adsorption of fatty acid, kerosene and fatty acid-kerosene on fluorapatite (001) surface were investigated by density functional theory (DFT) calculations. The results showed that the single fatty acid could form stable chemisorption on fluorapatite (001) surface by the O of fatty acids bonding with Ca1 site. The single kerosene could not be stably adsorbed on fluorapatite (001) surface because the H of kerosene did not form hydrogen bond with the O of PO43- on (001) surface (Osurf). For the coadsorption conformation, the chemisorption of fatty acid-kerosene on fluorapatite (001) surface was contributed by the interaction between O of fatty acids and Ca1, the H of kerosene did not bond with the Osurf, but the carbon chain length of kerosene has a large influence on the coadsorption. Compared with the coadsorption of fatty acid-decane, the adsorption of butyric acid-tetradecane and octanoic acid-tetradecane on fluorapatite (001) surface have greater adsorption energies and overlapping region of DOS between O 2p and Ca 4d, indicating that there is a synergistic effect between fatty acid and tetradecane. Meanwhile, the collaborative effects exist between the molecules of fatty acids. The interpenetrating adsorption of fatty acid and kerosene on the fluorapatite surface could improve the adsorption strength and density. The flotation test further confirmed that the single kerosene could not collect fluorapatite, but it could be collected by the single fatty acid. Besides, the synergistic effect between fatty acid and kerosene could increase the flotation recovery of fluorapatite.
PL
Salicylany są stosowane od wieków jako leki na różne dolegliwości. Wiele związków z tej grupy powstało w wyniku modyfikacji kwasu salicylowego, np. kwasu acetylosalicylowego (popularnego leku aspiryny) czy salicylanu fenylu (Salolu). Interesującym związkiem jest również kwas salicylurowy, będący głównym metabolitem salicylanów. Dla wspomnianych cząsteczek wykonano symulacje kwantowo-chemiczne w oparciu o Teorię Funkcjonału Gęstości (DFT) w fazie gazowej, a także w obecności rozpuszczalnika. Wpływ wewnątrzcząsteczkowego wiązania wodorowego, obecnego w kwasie salicylowym i salicylanie fenylu, na właściwości cząsteczek został również uwzględniony w badaniach. Analizę topologiczną i struktury elektronowej badanych cząsteczek wykonano według Kwantowej Teorii Atomów w Cząsteczkach (QTAIM) oraz Indeksu Oddziaływań Niekowalencyjnych (NCI).
EN
Salicylates have been used for centuries as medicine for various ailments. Many compounds of this group were obtained as a result of modification of salicylic acid, such as acetylsalicylic acid (a popular aspirin drug) and phenyl salicylate (Salol). Salicyluric acid, which is the main metabolite of salicylates, is also an interesting compound. Quantum-chemical simulations based on Density Functional Theory (DFT) in the gas phase, as well as in the presence of a continuum solvation model, were performed for the mentioned molecules. The effect of intramolecular hydrogen bonding, present in salicylic acid and phenyl salicylate, on the properties of the molecules was taken into account in the study. Topological and electron structure analyses of the molecules were carried out according to the Quantum Theory of Atoms in Molecules (QTAIM) and the Non-Covalent Interactions (NCI) index.
EN
Mechanical, electronic, thermodynamic phase diagram and optical properties of the FeVSb half-Heusler have been studied based on the density functional theory (DFT) framework. Studies have shown that this structure in the MgAgAs-type phase has static and dynamic mechanical stability with high thermodynamic phase consistency. Electronic calculations showed that this compound is a p-type semiconductor with an indirect energy gap of 0.39 eV. This compound’s optical response occurs in the infrared, visible regions, and at higher energies its dielectric sign is negative. The Plasmon oscillations have occurred in 20 eV, and its refraction index shifts to zero in 18 eV.
EN
The electronic, magnetic, and optical properties of PtCoBi half-Heusler compound [001] surfaces and its bulk state have been investigated in the framework of density functional theory using GGA approximation. The half-metallic behaviors of CoBiterm, CoPt-term and PtBi-term decrease with respect to its bulk state. The spin polarization at the Fermi level is 73.2% for the bulk state, and it is -64.4% and -64.1% for the CoBi-term and PtBi-term, respectively while less polarization has been observed for the ­CoPt-term. All terminations have given almost similar optical responses to light. Plasmon oscillations for the terminations occur in the range of 12.5 to 14.5 eV (21 to 22 eV) along xx (zz), and it occurs at 23 eV for the bulk state. The refractive index for the bulk and all three terminations is very high in the infrared and visible areas, meaning a very strong metallic trend in these compounds. The phenomenon of super-luminance occurs for the incident light with energy exceeding 5.5 eV for all three terminations, and it occurs in the range of 10 eV for the bulk mode. These terminations show transparent behavior after the energy of 10 eV.
EN
The effects of hydrogen absorption and manganese substitution on structural, electronic, optical, and thermoelectric properties of silicon-carbon nanotubes (SiCNT) are studied using the density functional theory and the GGA approximation. An examination of the PDOS curves and the electronic band structure showed that the Mn substitution leads to an increase in magnetic anisotropy and the occurrence of semi-metallic behavior and that the hydrogen absorption shifts the band gap toward the lower energies. A study of these nanostructures’ thermoelectric behavior reveals that the H absorption leads to a significant escalation in the figure of merit of the SiCNT to about 1.6 in the room temperature range. The effects of the H absorption on this nanotube’s optical properties, including the dielectric functions and its absorption spectra, are also investigated.
EN
The discrete Fourier transform (DFT) is the main method of electrical harmonic analysis since it’s easily realized in an embedded system. But there were some difficulties in performing synchronized sampling. The spectral leakage caused by asynchronous sampling affects the accuracy of harmonics analysis. Using window functions and interpolation algorithms can improve the accuracy of harmonics analysis. An approach for electrical harmonic analysis based on the interpolation DFT was proposed. A window function reduces DFT leakage and the interpolation algorithm modifies the calculation results of frequency, amplitude and the initial phase angle. The simulation results indicate that, by using the interpolation DFT electrical harmonic analysis method based on the Hanning window or the Blackman window, the error of calculating amplitudes and frequencies is not greater than 0.5%.
10
Content available remote Inspirowane kwantowo sieci neuronowe typu Hopfielda
PL
W pracy przedstawiono koncepcję sieci neuronowej o zespolonych parametrach (Q-inspired). Realizacja takiej sieci wykorzystuje hermitowską macierz połączeń pomiędzy neuronami. Zaproponowano również model uczenia maszynowego zrealizowany na bazie zespolonego aproksymatora. Wykazano przydatność takiego aproksymatora w analizie sygnałów w szczególności do realizacji dyskretnej transfomacji Fouriera (DFT) oraz odwrotnej dyskretnej transformacji Fouriera (IDFT).
EN
The paper presents the concept of a neural network with complex-valued parameters (Q-inspired). Implementation of such a network uses the Hermitian matrix of connections between neurons. A machine learning model based on a complex approximator has also been proposed. The usefulness of such an approximator in signal analysis has been demonstrated especially for the implementation of discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT).
EN
In this paper, the mechanism of interaction between hydrogen sulfide ions and malachite was investigated using density functional theory (DFT) calculations and time of flight secondary ion mass spectrometry (TOF-SIMS). The DFT calculations showed that HS− adsorption on the malachite (−201) surface was stronger than that of S adsorption resulting from the higher number of electron transfers in the solution which accelerated the sulfidation reaction rate. Density of states (DOS) analysis showed that the near Fermi level was jointly contributed to by the Cu 3d, O 2p, O 2S, and S 3P orbits after adsorption of HS− on the malachite (–201)surface. It was found that the 2p orbital of O and the 3p orbital of S overlapped, indicating that S not only reacted with Cu, but also with O. The TOF-SIMS detected S− and CuS2− fragment ion peaks in the 0−150 m/z negative segment of mass spectra. TOF-SIMS also showed that copper sulfide films of certain thicknesses were formed, demonstrating the effectiveness of hydrogen sulfide sulfidation in flotation processes.
EN
Environmental pollution due to humankind’s often irresponsible actions has become a serious concern in the last few decades. Numerous contaminants are anthropogenically produced and are being transformed in ecological systems, which creates pollutants with unknown chemical properties and toxicity. Such chemical pathways are usually examined in the laboratory, where hours are often needed to perform proper kinetic experiments and analytical procedures. Due to increased computing power, it becomes easier to use quantum chemistry computation approaches (QCC) for predicting reaction pathways, kinetics, and regioselectivity. This review paper presents QCC for describing the oxidative degradation of contaminants by advanced oxidation processes (AOP, i.e., techniques utilizing •OH for degradation of pollutants). Regioselectivity was discussed based on the Acid Blue 129 compound. Moreover, the forecasting of the mechanism of hydroxyl radical reaction with organic pollutants and the techniques of prediction of degradation kinetics was discussed. The reactions of •OH in various aqueous systems (explicit and implicit solvation) with water matrix constituents were reviewed. For example, possible singlet oxygen formation routes in the AOP systems were proposed. Furthermore, quantum chemical computation was shown to be an excellent tool for solving the controversies present in the field of environmental chemistry, such as the Fenton reaction debate [main species were determined to be: •OH < pH = 2.2 < oxoiron(IV)]. An ongoing discussion on such processes concerning similar reactions, e.g., associated with sulphate radical-based advanced oxidation processes (SR-AOP), could, in the future, be enriched by similar means. It can be concluded that, with the rapid growth of computational power, QCC can replace most of the experimental investigations related to the pollutant’s remediation in the future; at the same time, experiments could be pushed aside for quality assessment only.
EN
The electronic, optical and thermoelectric properties of MoS2 nano-sheet in presence of the ru impurity have been calculated by density functional theory framework with generalized gradient approximation. The MoRuS2 nano-sheet electronic structure was changed to the n-type semiconductor by 1.3 eV energy gap. The optical coefficients were shown that the loosing optical energy occurred in the higher ultraviolet region, so this compound is a promising candidate for optical sensing in the infrared and visible range. The thermoelectric behaviors were implied to the good merit parameter in the 100K range and room temperatures and also has high amount of power factor in 600K which made it for power generators applications.
EN
In this work, a highly effective catalyst (MoO3) is synthesized and applied for catalytic wet air oxidation (CWAO) treatment of pharmaceutical wastewater. The catalyst is systematically characterized to investigate the morphology, crystal structure and chemical composition, and the findings demostrated that MoO3 catalyst is successfully synthesized. The degradation mechanism is also illustrated by the density functional theory (DFT) calculation. The degradation experiments confirm that MoO3 catalyst exhibits excellent catalytic performance in CWAO, and the removal rate of TOC (Total Organic Carbon) and COD (Chemical Oxygen Demand) is achieved to more than 93%. The catalyst doses, reaction temperature and reaction time have a significant impact on the removal of pollutants. The degradation process of pollutants in CWAO could be satisfactorily fitted by the second-order kinetics. Besides, MoO3 displays a favorable stability as CWAO catalyst. DFT calculation illustrates that MoO3 catalyst is a typical indirect band gap semiconductor. Moreover, the high temperature environment provides the thermal excitation energy, which favors to the free electrons nearing Fermi level to escape the material surface, and excites them to the conduction band, then directly reduces the pollutants in CWAO. These findings demonstrate that MoO3 can be used as an efficient and excellent catalyst for CWAO of pharmaceutical wastewater.
PL
W pracy zbadano wpływ podstawienia atomu wolframu atomem żelaza w pierwszorzędowej strukturze heteropolikwasu fosforowolframowego o budowie anionu Keggina. Charakterystykę struktury elektronową zmodyfikowanego heteropolikwasu przeprowadzono za pomocą: analizy populacyjnej NBO, całkowitych (PDOS) i parcjalnych (PDOS) widm gęstości stanów, energetyki i charakteru chemicznego orbitali granicznych (HOMO/LUMO) oraz rozmiaru przerwy wzbronionej (gap). Dodatkowo zbadano mechanizm oddziaływania modyfikowanego kationem Fe2+ heteropolikwasu fosforowolframowego z cząsteczką H2O pełniącą rolę środowiska reakcji chemicznej. W większości charakterystyk stwierdzono istotny wpływ wprowadzonego metalu przejściowego na ww. właściwości w stosunku do heteropolikwasu wyjściowego H3PW12O40.
EN
In this paper the influence of substituting the tungsten atom with an iron ion in the primary structure of the phosphotungstic heteropolyacid with the Keggin anion structure was investigated. Characterization of the electronic structure of the modified heteropolyacid was performed using: population analysis according to NBO scheme, total (TDOS) and partial (PDOS) density of states spectra, energy and chemical character of frontier orbitals (HOMO/LUMO) and the size of the HOMO-LUMO band gap. Additionally, the mechanism of interaction between the Fe2+ with H2O molecule, acting as a chemical reaction medium, was investigated. Most cases showed a significant effect of the introduced transition metal ion (Fe2+) on the above-mentioned properties in relation to the nonmodified heteropolyacid H3PW12O40.
EN
In this article, synthesis, electronic and optical properties of an N-cyclohexyl-acrylamide (NCA) molecule are described based on different solvent environments and supported by theoretical calculations. Theoretical calculations have been carried out using a density function theory (DFT). Temperature dependence of the sample electrical resistance has been obtained by a four-point probe technique. Experimental and semitheoretical parameters such as optical density, transmittance, optical band gap, refractive index of the NCA for different solvents were obtained. Both optical values and electrical resistance values have shown that NCA is a semiconductor material. The values of HOMO and LUMO energy levels of the headline molecule indicate that it can be used as the electron transfer material in OLEDs. All results obtained confirm that the NCA is a candidate molecule for OLED and optoelectronic applications.
EN
In this research, a series of Ru(II) complexes, ([Ru(1-7)(ina)(NCS)2] (1-7=5-[6-(5-mercapto-1,3,4-oxadiazol-2-yl)pyridin- 2-yl]-1,3,4-oxadiazole-2-thiol’s, ina=isonicotinic acid) were synthesized and characterized using different spectroscopic and analytic techniques, such as NMR, UV, IR, CV and CHN. Also, the new complexes were used in dye-sensitized solar cells (DSSC) as sensitizers. Current-voltage characteristics showed that the modifications of ligands clearly affected DSSC yield. Additionally, DFT calculations were performed and showed locations of frontier molecular orbitals of the complexes. While the locations of HOMO and HOMO – 1 orbitals are on Ru(II) metal center and SCN− ligands, the location of LUMO and LUMO + 1 orbitals are on the 1-7 ligands.
EN
The geometries, electrostatic potential, Mulliken charge analysis, Natural Bond Orbital analysis and polarizabilities of propyl-para-hydroxybenzoate were calculated using B3LYP functional with 6-311++G(d,p) basis set. The calculated geometries are well matched with the experimental values. The Mullliken atomic charge analysis shows that the eventual charges are contained in the molecule. The NBO analysis explains the intramolecular charge transfer in the PHB molecule. The bonding features of the molecule were analyzed with the aid of Hirshfeld surface analysis. The frontier molecular orbital analysis showed the charge transfer obtained within the molecule. The calculated hyperpolarizability of the PHB molecule was 6.977E -30 esu and it was 8.9 times that of standard urea molecule.
EN
The half-metallic, mechanical, and transport properties of the quaternary Heusler compound of PdZrTiAl is discussed under hydrostatic pressures in the range of –11.4 GPa to 18.4 GPa in the framework of the density functional theory (DFT) and Boltzmann quasi-classical theory using the generalization gradient approximation (GGA). By applying the stress, the band gap in the minor spin increases so that the lowest band is obtained 0.25 eV at the pressure of –11.4 GPa while the maximum gap is calculated 0.9 eV at the pressure of 18.4 GPa. In all positive and negative pressures, the PdZrTiAl composition exhibits a half-metallic behavior 100% spin polarization at the Fermi level. It is also found that applying stress increases the Seebeck coefficient in both spin directions. In the minority spin, the n-type PdZrTiAl, the power factor (PF) for all the cases is greater in the equilibrium state than the strain and stress conditions whereas in the majority spin, the PF value of the stress state is greater than the other two. The non-dimensional figure of merit (ZT) is significant and is about one in spin down in the room temperature for the all pressure states that it remains on this value by applying pressure. The obtained elastic constants indicate that the PdZrTiAl crystalline structure has a mechanical stability. Based on the Yong (E), Bulk (B) and shear (G) modulus and Poisson (n) ratio, the brittle-ductile behavior of this compound has been investigated under pressure. The results indicate that PdZrTiAl has a ductile nature and it is a stiffness compound in which elastic and mechanical instability increases by applying strain.
EN
In the current article we would like to summarize our research shedding light onto properties of intramolecular hydrogen bonds present in N-oxide quinoline derivatives. The compounds for the current study were chosen to contain diverse types of hydrogen bonds. Therefore, in the current study we analyze three kinds of hydrogen bonding and their properties. It is well known, that the presence of intramolecular hydrogen bonds stabilizes conformations of molecules. Substituent effects (inductive and steric) influence the strength of the H-bonding as well as its features. Moreover, the intramolecular hydrogen bond in the studied N-oxides belongs to the family of resonance assisted hydrogen bonds (RAHB). Our short overview presents the summary of results obtained for twelve N-oxides of quinoline derivatives. Quantum-chemical simulations were performed on the basis of static models (classical DFT and MP2 approaches) as well as ab initio molecular dynamics (Car-Parrinello MD). The metadynamics method was applied to reproduce the maps of free energy for the motion of the bridged proton. The computations were performed in the gas and in the crystalline phases. Electronic ground state is a natural framework in which chemical compounds exist most of the time. However, in many chemical species we observe a spontaneous internal reorganization of their chemical bonds and atoms e.g. proton transfer phenomenon and the appearance of tautomeric forms already in the ground state. Therefore, it was interesting to investigate some N-oxides in the excited electron state knowing that they exhibit excited- state-induced proton transfer (ESIPT effect). At the end of the article we draw some conclusions related to the intramolecular H-bond properties present in the discussed N-oxides of quinoline derivatives.
first rewind previous Strona / 6 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.