Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  DEFFEM package
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents a multi-scale mathematical model dedicated to a comprehensive simulation of resistance heating combined with the melting and controlled cooling of steel samples. Experiments in order to verify the formulated numerical model were performed using a Gleeble 3800 thermo-mechanical simulator. The model for the macro scale was based upon the solution of Fourier-Kirchhoff equation as regards predicting the distribution of temperature fields within the volume of the sample. The macro scale solution is complemented by a functional model generating voluminal heat sources, resulting from the electric current flowing through the sample. The model for the micro-scale, concerning the grain growth simulation, is based upon the probabilistic Monte Carlo algorithm, and on the minimization of the system energy. The model takes into account the forming mushy zone, where grains degrade at the melting stage – it is a unique feature of the micro-solution. The solution domains are coupled by the interpolation of node temperatures of the finite element mesh (the macro model) onto the Monte Carlo cells (micro model). The paper is complemented with examples of resistance heating results and macro- and micro-structural tests, along with test computations concerning the estimation of the range of zones with diverse dynamics of grain growth.
PL
W artykule przedstawiono możliwości obliczeniowe autorskiego oprogramowania DEFFEM w zakresie symulacji nagrzewania/przetapiania oporowego wraz z przykładowymi wynikami walidującymi przyjęte założenia modelu numerycznego. Pakiet symulacyjny stanowi integralną część opracowanej metodyki i bazuje na metodzie elementów skończonych, hydrodynamiki cząstek rozmytych oraz metodzie Monte Carlo w zakresie pełnej symulacji 3D wybranych zjawisk wysokotemperaturowego przetwarzania stali. Opracowany model termiczny nagrzewania/przetapiania oporowego oparto na rozwiązaniu równania Fouriera-Kirchoffa. Warunki brzegowe w postaci strumieni cieplnych zostały przyjęte zgodnie z warunkami próby realizowanej w układzie symulatora termo-fizycznego Gleeble 3800. Zjawiska kontaktowe i wymiana ciepła z otoczeniem modelowana była z wykorzystaniem zastępczego współczynnika wymiany ciepła. Podczas numerycznej symulacji nagrzewania/przetapiania oporowego w układzie symulatora Gleeble 3800, ciepło towarzyszące przepływowi prądu zostało uwzględnione w równaniu F-K jako moc wewnętrznych źródeł ciepła. Modelując wytwarzanie ciepła w wyniku przepływu prądu, przyjęto, że jego ekwiwalentem w modelu numerycznym będzie objętościowe źródło ciepła o mocy proporcjonalnej do rezystancji, kwadratu natężenia przepływającego prądu oraz funkcji intensywności dobieranej na podstawie eksperymentów. Oprogramowanie DEFFEM może być wykorzystane m.in. do analizy i modelowania energooszczędnej, ulepszonej w stosunku konwencjonalnego procesu metalurgicznego (odlewania, a następnie walcowania na zimno pasma) z nową technologią walcownia pasma, w którym współistnieje faza stała i ciekła. Nowa technologia jest ekonomiczniejsza oraz korzystnie oddziałuje na środowisko naturalne, ze względu na zmniejszenie emisji gazów.
EN
The paper presents computing capabilities of the original software DEFFEM as regards simulating resistance heating/remelting, along with examples of results validating the adopted assumptions of the numerical model. The simulation package is an integral part of the developed methodology, and is based upon the finite element method, the smoothed particle hydrodynamics, and the Monte Carlo method for the full 3D simulation of the selected effects of high temperature steel processing. The formulated thermal model of resistance heating/remelting is based upon the solution of the Fourier-Kirchoff equation. The boundary conditions in the form of heat fluxes have been adopted in accordance with the conditions of a test performed within the conditions of the Gleeble 3800 thermophysical simulator system. Contact effects and heat transfer to the environment were modelled using a substitute heat transfer coefficient. During the numerical simulation of resistance heating/remelting within the Gleeble 3800 simulator system, the heat accompanying the electric current flow was included in the F-K equation as the power of internal heat sources. When modelling the heat generation resulting from the electricity flow, it was assumed that its equivalent in the numerical model would be a voluminal heat source with its power proportional to the resistance, the square of electric current intensity, and the intensity function selected on the basis of experiments. The DEFFEM software can be used, among others, for analysing and modelling a new energy-saving strand rolling process, in which the solid phase and the liquid phase coexist. This process is improved as compared to the conventional metallurgical process (casting followed by strand cold rolling). The new process is more cost effective and has an advantageous environmental impact, due to the reduction of gas emissions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.