Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  DC-DC boost converter
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
DC-DC converters have become essential components in various industrial applications, including aerospace, electric vehicles, and renewable energy systems. However, ensuring enhanced reliability remains a critical challenge for these converters. Fault diagnosis and reliability analysis are crucial for preventing damage and minimizing maintenance costs. This study focuses on investigating the operational behavior of DC-DC boost converters under normal and faulty conditions, precisely targeting open-circuit and short-circuit faults in converter switches. To achieve this, an adaptive threshold approach is introduced for effective fault detection. The adaptive threshold value is calculated based on measured voltage and current signals, along with their corresponding reference signals from the primary control system. The research is structured into two parts: the first part addresses sliding mode control aspects, ensuring regulated output voltages, output currents, and capacitor voltage for sustained converter operation. The second part investigates fault diagnosis, analyzing the impact of defective DC-DC converters on the overall electrical system functionality. The proposed algorithm's performance is evaluated and validated through simulations in MATLAB/Simulink environment. Furthermore, based on the results’ comparison, the proposed approach of the sliding mode controller and adaptive threshold contributes to enhancing the reliability of DC-DC converters and enables effective fault detection and isolation.
2
Content available remote Intelligent voltage controller based on ufzzy logic for DC-DC boost converter
EN
One of the photovoltaic (PV) applications is as a renewable energy source. The photovoltaic (PV) output voltage becomes the voltage source for the DC-DC boost converter. To adjust the DC-DC boost converter's output voltage, the control system needs to adjust the output voltage of the DC-DC boost converter applied by the PV. The voltage generated by the DC-DC boost converter follows the needs of the electrical equipment or load. The control system on the DC-DC converter uses a Proportional Integral (PI) Controller and a Fuzzy Logic (FL). The PI controller and FLC can control the output voltage of the DC-DC converter. This PI controller is compared with FL to obtain the appropriate output voltage for the dc-dc boost converter. The output of this PI and FLC controller system is the duty cycle used to control the DC-DC boost converter's performance. The PI controller system is tuned by autotuning and FL to obtain control parameters of a DC-DC boost converter with a 12 V PV voltage source and a 24 V output voltage. The results of the PI controller constants obtained are: kp = 1.8, ki = 0.9, maximum overshoot voltage (Mp) = 39 V (62.25%), rise time = 1.0 seconds, settling time = 5.0 seconds, transient state = 5.0 seconds, and steady-state error of 8.4%. The simulation results of the FL controller constants were obtained: 4.2% steady-state error and a settling time of 1.5 seconds, with a 4.2% steady-state error. The results of the control output voltage DC-DC boost converter fed by PV showed FL was better than the PI controller.
PL
Jednym z zastosowan fotowoltaicznych (PV) jest odnawialne zrodlo energii. Napiecie wyjsciowe fotowoltaiki (PV) staje sie zrodlem napiecia dla prztwomicy podwyzszajacej DC-DC. Abywyregulowac napicie wyjsciowe przetromicy podwyzszajacej DC-DC, system sterowania musi wyregulowac napieciewyjściowe przetwornicy podwyższającej DC-DC, system sterowania musi wyregulować napięcie wyjściowe przetwornicy podwyższającej DC-DC stosowanej przez PV. Napięcie generowane przez przetwornicę podwyższającą DC-DC odpowiada potrzebom sprzętu elektrycznego lub obciążenia. System sterowania w przetworniku DC-DC wykorzystuje sterownik proporcjonalno-całkujący (PI) i logikę rozmytą (FL). Kontroler PI i FLC mogą sterować napięciem wyjściowym przetwornika DC-DC. Ten regulator PI jest porównywany z FL w celu uzyskania odpowiedniego napięcia wyjściowego dla przetwornicy podwyższającej DC-DC. Wyjściem tego systemu kontrolera PI i FL jest cykl pracy używany do sterowania wydajnością przetwornicy DC-DC boost. System regulatora PI jest dostrajany przez autotuning i FL w celu uzyskania parametrów kontrolnych przetwornicy podwyższającej napięcie DC-DC ze źródłem napięcia PV 12 V ki napięciem wyjściowym 24 V. Otrzymane wyniki stałych regulatora PI to: kp = 1,8, ki = 0,9, maksymalne napięcie przeregulowania (Mp) = 39 V (62,25%), czas narastania = 1,0 s, czas ustalania = 5,0 s, stan przejściowy = 5,0 s, błąd stanu ustalonego 8,4%. Uzyskano wyniki symulacji stałych regulatora FLC: błąd stanu ustalonego 4,2% i czas ustalania 1,5 sekundy z błędem stanu ustalonego 4,2%. FL był lepszy od kontrolera PI.
3
Content available remote Novel modified non-isolated DC-DC boost converter based on voltage lift technique
EN
In this paper, a novel DC-DC boost converter based on the voltage lift technique is manifested. It is firmly reasoned that, with a lesser number of elements, the proposed converter can yield analogously high voltage gain than that of the recently published DC-DC boost converters. The proposed converter is anticipated to provide higher efficiency due to its substantial voltage gain at a comparatively low duty cycle. Finally, to validate the acquired simulation results, a small-scale laboratory prototype is implemented and compared with the theoretical interpretation.
PL
Przedstawiono nowy przekształtnik DC-DC typu boost bazujący na technice voltage lift. Przy mniejszej liczbie elementów yen przekształtnik ma on lepsze parametry niż przekształtniki opisywane w literaturze. Skonstruowano i zbadano prototyp przekształtnika.
EN
The paper presents in details a method and results of Hardware-in-the-Loop real-time simulation of switch-mode converters in FPGA based hardware. A mathematical description of DC-DC boost converter model, its FPGA-based implementation and debugging results are presented. The results are compared with Simulink model and practical converter. The presented method of simulation can be used for verification of discrete control in designed converters and also as an educational platform.
PL
W artykule przedstawiono w szczegółach metodę i rezultaty symulacji przekształtników impulsowych zrealizowane w układach FPGA. Przedstawiono opis matematyczny modelu przekształtnika DC-DC podnoszącego napięcie, jego implementację w układzie FPGA oraz wyniki. Wyniki z modelu są porównywane z modelem zbudowanym w pakiecie Simulink oraz z praktyczną realizacją układu. Zaprezentowana metoda symulacji może zostać zastosowana do weryfikacji sterowania dyskretnego w projektowanych przekształtnikach oraz jako platforma edukacyjna.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.