Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  DC–DC converters
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Small-signal transmittances of the power stage of a flyback converter in continuous conduction mode are derived on the averaged model obtained by the separation of variables approach. The precise knowledge of these transmittances is necessary in the design process of the converter control circuit. Apart from mathematical formulas for transmittances, the numerical calculations of the frequency dependencies of the transmittances for the assumed set of the converter parameters are presented with the parasitic resistances of components taken into account. The results of the calculations are compared with the measurements performed on the laboratory model of the converter and a good consistency is observed. It is concluded, that the results of the paper may be useful in the designing process of a control circuit of the flyback converter.
EN
This paper presents a novel fault detection algorithm for a three-phase interleaved DC–DC boost converter integrated in a photovoltaic system. Interleaved DC–DC converters have been used widely due to their advantages in terms of efficiency, ripple reductions, modularity and small filter components. The fault detection algorithm depends on the input current waveform as a fault indicator and does not require any additional sensors in the system. To guarantee service continuity, a fault tolerant topology is achieved by connecting a redundant switch to the interleaved converter. The proposed fault detection algorithm is validated under different scenarios by the obtained results.
3
Content available Boosting resonant switched-capacitor voltage tripler
EN
This elaboration presents the concept of a unidirectional DC–DC switchedcapacitor converter operating as a voltage tripler. The system consists of two resonant cells with switched capacitors and chokes. This proposed converter topology achieves low voltages on semiconductor switches (diodes and transistors) compared to the classic SC series-parallel converter or the boost topology. The output voltage on the capacitors is reduced in the proposed converter because it is divided into two series-connected capacitors with asymmetric distribution. The presented results describe the analytical description of the system operation and the analytical equation for semiconductor currents. A simulation and experimental results have been performed. The system efficiency and three voltage gain values were measured in the experimental setup. The efficiency measured was also compared with the analytical determination curve for loss analysis and further converter optimization.
EN
Large-signal input characteristics of three DC–DC converter types: buck, boost and flyback working in the discontinuous conduction mode (DCM), obtained by precise large signal PSpice simulations, calculations based on averaged models and measurements are presented. The parasitic resistances of the converter components are included in the simulations. The specific features of the input characteristics in the DCM and the differences between the continuous conduction mode (CCM) and DCM are discussed.
EN
Large-signal input characteristics of three DC–DC converter types: buck, boost and flyback working in the continuous conduction mode (CCM), obtained by simulations and measurements are investigated. The results of investigations are presented in the form of the analytical formulas and the exemplary results of the measurements and two forms of simulations: based on the full description of the converter components and on the averaged models. The parasitic resistances of the converter components are included in the simulations and their influence on the simulation results is discussed.
EN
The measurement of frequency characteristics, like magnitude and phase, related to a specific transfer function of DC–DC converters, can be a difficult task - especially when the measured signal approaches the boundary of a small-signal model validity (i.e. 1/3 of the switching frequency fS ). It is hard to find a paper where authors mention the measurement techniques they use to draw frequency characteristics. Meanwhile the presence of noise in the output signal does not enable to directly measure the gain and the phase shift between the input and output signals. In such situations additional analysis is required in order to achieve a reliable result. This paper contains a description of a few methods that can be used to analyse measured signals in order to determine the gain and the phase shift of a specific transfer function. They enable to verify mathematical models in a wide range of frequencies (up to 1/3 fS ). The methods use signals measured in the time domain and can be implemented in mathematical software such as Matlab or Scilab.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.