Reaction-diffusion equations are vitally important due to their role in developing sturdy models in various scientific fields. In the present work, we address an algorithm of the Daftardar-Gejji and Jafari method for solving the nonlinear functional equations of the form ψ = f +L(ψ) + N(ψ). Further, we employ this algorithm to solve Caputo derivative-based time-fractional Cauchy reaction-diffusion equations. We obtain solutions in a series form that converges to a closed form. Furthermore, we perform numerical simulations for the various values of the order of fractional derivatives. The computational procedure of the proposed algorithm is not burdensome. However, it is time-efficient and can easily be implemented using a computer algebra system.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.