Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Cainozoic
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Otwór wiertniczy Suchostruga znajduje się około 15 km na wschód od Mszczonowa i z geologicznego punktu widzenia leży w niecce warszawskiej, stanowiącej część jednostki tektonicznej – synklinorium brzeżnego. Jest jednym z sześciu otworów badawczych na arkuszu Mszczonów Szczegółowej Mapy Geologicznej Polski (SMGP) w skali 1:50 000, ale jako jedyny udokumentował pełen profil osadów kenozoiku o łącznej miąższości 284,6 m. Na podstawie wyników analiz uziarnienia, składu mineralnego frakcji ciężkiej i lekkiej oraz składu petrograficznego żwirów wykazano różnice litologiczne i facjalne w osadach powstających w odmiennych basenach sedymentacyjnych nawet tego samego wieku, rozpatrywanych na podstawie osadów graniczących ze sobą w tym jednym profilu wiertniczym. Dodatkowym potwierdzeniem tego wnioskowania są wyniki analiz palinologicznych i mikropaleontologicznych. Badane osady powstawały w środowisku morskim i lądowym. Odniesiono je do jednostek chronostratygraficznych paleocenu, eocenu, miocenu (pliocenu) oraz czwartorzędu. Profil Suchostruga można uznać za profil odniesienia – hipostratotyp o zasięgu regionalnym na obszarze środkowej Polski, a przynajmniej dla niecki warszawskiej.
EN
The Suchostruga borehole was drilled approximately 15 km east of Mszczonów. From the geologic point of view, it lies in the Warsaw Trough that is part of a tectonic unit called the Marginal Trough. The borehole is one of six reconnaissance wells drilled in the Mszczonów Sheet of the SMGP (Detailed Geological Map of Poland), scale 1:50 000. However, this is the only borehole that has documented a complete Cainozoic section, 284.6 m thick. Lithological and facies differences between deposits that accumulated in different sedimentary basins of the same age, considered based on adjacent sediments in this single section have been proved based on the grain-size analysis, composition of heavy and light minerals and petrographic composition of gravels. Additional confirmation of the inference is the results of palynological and micropaleontological investigations. The sediments were deposited in marine and terrestrial environments. Finally, they have been correlated to the chronostratigraphic units of the Paleocene, Eocene, Miocene (Pliocene) and Quaternary. That is why the Suchostruga section can be considered a reference section for central Poland – a regional-scale hypostratotype, at least for the Warsaw Trough.
PL
Garb Lubawski z kulminacją Wzgórz Dylewskich to obszar masowego występowania struktur glacitektonicznych, związanych z istnieniem w tym rejonie szeregu różnoskalowych stref międzylobowych ukształtowanych podczas stadiału głównego zlodowacenia Wisły. Różna dynamika, charakter i czas transgresji lądolodu lobów wiślanego i mazurskiego w czasie ostatniego zlodowacenia znajdują odzwierciedlenie w następstwie struktur glacitektonicznych obserwowanych w odsłonięciach. Odkrywka w rejonie Rożentala umożliwia prześledzenie przebiegu procesów sedymentacyjnych i glacitektonicznych, które doprowadziły do powstania kilkudziesięciu bliźniaczo podobnych form szczelinowych znajdujących się na zachodnim skłonie Garbu Lubawskiego. Jądro omawianej formy w Rożentalu powstało podczas deglacjacji frontalnej pierwszego, maksymalnego nasunięcia lądolodu stadiału głównego zlodowacenia Wisły, najprawdopodobniej jako stożek marginalny. Podczas kolejnej (lub kolejnych) oscylacji czoła lądolodu wzgórze to zostało przebudowane we wrzecionowatą formę szczelinową.
EN
The Lubawa Ridge with Dylewskie Heights are abundantin glaciotectonic phenomena related to many intra-lobe zones (varied in scale) observed in this area. These zones were formed during the main stage of the Weichselian (= Vistulian) Glaciation. Different dynamics and timing of the advance of the Vistulian and Mazury lobs from the Last Glaciation are reflected in the succession of glaciotectonic structures observed in the Rożental outcrop.The Rożental outcrop is unique for investigation of sedimentary and glaciotectonic processes. Rożental hill is one of several tens of crevasse landforms present on the western slope of the Lubawa Ridge. Rożental hill was created during frontal deglaciation of the first-maximal Weichselian ice-sheet advance (the main stage). Primarily, it was probably an ice-marginal fan. The hill was rebuilt into a spindle-shaped crevasse landform during the next oscillation (or oscillations) of the glacier front.
EN
At the end of the Jurassic and beginning of the Cretaceous in the Western Outer Carpathians (WOC) rift-related extension led to development of: the deep marine grabens with flysch and pelagic sedimentation, the zones of shallow marine carbonate sedimentation, and the elevated horsts, supplying the basins with sediments. Transition to the Early Cretaceous and Cenomanian post-rift thermal sag stage was responsible for a general ceasing of tectonic activity in the source areas and unification of the previous sub-basins. In Barremian–Albian time, the northern, external sources for sediments were uplifted due to compression, presumably caused by the orogenic collision in the Middle and Outer Dacides and/or collision related to subduction of the Penninic Ocean. The Silesian Ridge, rapidly elevated and eroded during Late Cretaceous and Paleocene, is interpreted here as an active thick-skinned thrust belt. Nappe stacking in that area and stress transmission towards foreland caused flexural subsidence of the proximal zone (the inner Silesian Basin) and uplift in the distal zone (including: the outer Silesian Basin, the Subsilesian facies zone, the Skole Basin and the northern sediment source areas). The Eocene alternating shallow marine deposition in the Silesian Ridge and its exposition for erosion is interpreted as controlled by both eustatic sea level changes and episodic tectonic activity. At this time new thick-skinned thrust belt developed south of the Magura Basin, which supplied vast amount of detritus for the Magura Beds. The Eocene tectonic shortening and deformations in the Southern Magura Ridge and development of the accretionary prism caused flexural bending of its broad foreland, subsidence and relative facies unification of the basins and decrease of activity of the source areas located north of the Magura Basin. The Oligocene progress of plates/microplates convergence and relocation of the zone of tectonic shortening towards the north led to compressional uplift of the source areas located both to the north of the WOC basins and to the south of the Silesian facies zone, the later composed of crystalline basement, as well as sediments of the Magura Unit. That sources supplied with detritus the Upper Oligocene–Llower Miocene Krosno Beds, being a diachronic continuation of synorogenic deposition of the Magura Beds. During the Late Cretaceous–Paleogene–Early Miocene, an important tectonic shortening across the WOC took place, accommodated mainly in the source areas. This indicates that the palaeogeographic relationships between the Silesian Basin, the Magura Basin and the Central Carpathian Paleogene Basin were changing during the Cretaceous and Cainozoic. In the time span of Albian to Oligocene in the zone palaeogeographically located between the Magura Basin and the Central Carpathians three separate source areas were active, each characterized by a different geological setting. These sources were replacing each other in time, suggesting significant collisional and/or strike slip reorganisation of the zone during that period. The collision of the WOC evolved in time from thick-skinned mode during the Late Cretaceous–Paleogene to thin-skinned one during the Middle Miocene.
EN
Analysis of deposition rate were performed for synthetic sections, representing the upper Jurassic to lower Miocene sedimentary fill of the Western Outer Carpathian (WOC) basins. Calculated deposition rates differs in a range of a few orders of magnitude. During Tithonian to Berriasian-early Valanginian tectonic activity of the source areas supplying the Silesian Basin was related to the mechanism of syn-rift extensional elevation and erosion of horsts. General decay of source area activity in Valanginian to Cenomanian time was caused by regional post-rift thermal sag of the WOC. The Barremian to Albian phase of compressional uplift of the source area located north of the WOC lead to increase of deposition rate in some zones of the WOC basin. In Turonian to Paleocene time thick-skinned collision and thrusting took place south and south-west (in the recent coordinates) of the Silesian Basin causing very rapid, diachronous uplift of this zone, referred to as Silesian Ridge, resulting with high deposition rate in the Silesian Basin. At that time supply of sediments to the Magura Basin from south was relatively low, and the Pieniny Klipen Belt was presumably zone of transfer of these sediments. In Eocene the zone of collisional shortening in the WOC system was relocated to the south, causing rapid uplift of the Southern Magura Ridge and intense supply of detritus to the Magura Basin. Thrusting in the Southern Magura Ridge and collisional compression resulted with flexural bending of its broad foreland, being the reason for decrease of activity of both the Silesian Ridge and the source area at the northern rim of the WOC. The Eocene evolution of the Silesian Ridge is interpreted as controlled by both episodic tectonic activity and eustatic sea level changes. Contrasting development of the Southern Magura Ridge and the northern rim of Central Carpathians during Eocene stands for a palaeographic distance between the two domains at that time. During Oligocene and early Miocene a significant increase of deposition rates is observed for the basin in which sediments of the Krosno beds were deposited. This was caused by tectonic uplift of the source at the northern rim of the WOC, as well as the Silesian Ridge and the partly formed Magura nappe. The Miocene molasse of the WOC foredeep basin is characterised by notably higher maximum deposition rates than ones calculated for the flysch deposits of the WOC.
PL
Przyjmowana dotychczas hipoteza rozwoju systemów jaskiniowych na górze Połom zakładała jego kształtowanie się w trzech fazach korespondujących z trzema cyklami morfogenetycznymi prowadzącymi do powstania zrównań, o czym świadczyć miały tzw. horyzonty jaskiniowe. Na podstawie pomiarów wykonanych w latach 1996–2000 uzyskano dane morfometryczne o 37 jaskiniach o łącznej długości ok. 3000 m. W porównaniu z okresem, w którym powstała hipoteza „horyzontów jaskiniowych”, ilość poznanych korytarzy jaskiniowych wzrosła dziesięciokrotnie. Nowe, pełniejsze dane o krasie Połomu nie potwierdzają istnienia trzech wyraźnych horyzontów jaskiniowych w zakładanych dotychczas granicach. Obecnie obserwowany układ korytarzy, cechujący się przewagą jaskiń pionowych, wskazuje na inny sposób rozwoju systemu krasowego i całego wzgórza Połom, nie powiązany z tzw. powierzchniami zrównań. Otrzymanie odpowiedzi na pytanie o wiek i sposób uformowania systemu krasowego Połomu może istotnie przyczynić się do rekonstrukcji rozwoju paleogeograficznego całych Sudetów Zachodnich.
EN
According to the accepted hypothesis ofkarstic development in the Połom hill, the cave systemformed in three phases corresponding to three morphogenetic cycles, each resulting in regional planation. The caves were claimed to be arranged into three altitudinal cave levels. New cave inventory accomplished in 1996-2000provided morphometric data on 37 caves with total length of almost 3000 m, which means a ten time increase in relation to the data available previously. The new comprehensive picture does not confirm the existence of three cave levels in the supposed altitude ranges. The actual spatial arrangement of cave galleries, with vertical caves predominating, points to an evolutionary history which reflects continuous relief differentiation rather than discrete planation cycles. Deciphering the age and geomorphological history of the karst system on the Połom hill may provide important clues to the reconstruction ofpalaeogeographic evolution of the entire West Sudetes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.