Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  CT scan experiment
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
To study the mesoscopic damage evolution characteristics of skarn under freeze-thaw cycles, based on CT technology, the skarn samples under freeze-thaw action were scanned by CT, and the image data of skarn were segmented by Avizo software. The digital model of the three-dimensional structure of skarn was established, and the evolution law of the internal structure of skarn during the freeze-thaw cycle was quantitatively analyzed. The box dimension algorithm calculates the fractal dimension of the pore structure under freeze-thaw conditions. The relationship between fractal dimension, pore volume fraction, and freeze-thaw cycles was studied. According to the statistical results of the pore size distribution of skarn, the change characteristics of pore structure in the rock under the influence of freeze-thaw were studied. Based on the theory of rock damage mechanics, the damage variable of skarn was defined using the concept of the effective bearing zone, and the freeze-thaw damage evolution of skarn was studied. The results show that the three-dimensional reconstructed model can directly show each medium’s mesopore structure and spatial distribution. There is a positive correlation between pore volume fraction and fractal dimension under freeze-thaw conditions. The fractal dimension satisfies the exponential growth law. The skarn damage variable increases with the increase of freeze-thaw cycles, which is consistent with the development trend of pore structure. The exponential function can better reflect the damage evolution of skarn under freezing and thawing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.