Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  CT scan
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
At present, a series of petrophysical experimental studies have been carried out on the velocity dispersion and attenuation caused by wave induced fluid flow. So as many valuable theoretical models have been proposed or developed. But these studies fail to reflect the influence of different pore structure types on velocity dispersion and attenuation. Carbonate rocks have complex pore structure and strong heterogeneity. The study of the influence of pore structure on acoustic propagation characteristics at different frequencies is of great significance for further refinement of reservoir prediction. Through computed tomography scan and digital image processing, the pore structure distribution of longitudinal section of carbonate rock is obtained. On this basis, the finite difference numerical simulation of acoustic wave field is carried out, and the variation law of acoustic velocity with frequency and the relationship between acoustic velocity dispersion and attenuation coefficient are analyzed. The acoustic velocity extrapolation model based on frequency dispersion is established and compared with the experimental results to verify the effectiveness. The research results provide a theoretical basis for the prediction of carbonate reservoir parameters.
2
Content available remote Automated MTF measurement in CT images with a simple wire phantom
EN
This study developed a simple wire phantom and an algorithm to automatically measure the modulation transfer function (MTF) in computed tomography (CT) and implemented it to evaluate the effect of focal spot size and reconstruction filter type. The phantom consisted of a resin cylinder filled with water, with a tin wire of diameter 0.1 mm positioned along the center of the cylinder. The automated MTF algorithm used an axial image of the phantom and comprised several steps. The center position of a region of interest (ROI) was automatically determined at the center of the wire image. The pixels were then summed along the y-direction to obtain the profile of the pixel values at a point along the x-direction. Following this, both edges of the profile were made equal to zero. The profile curve was then normalized so that the total of all the data was equal to unity. The normalized profile curve is the line spread function (LSF), and the MTF curve was obtained by taking its Fourier transform. Our system (phantom and algorithm) is able to differentiate the MTFs of CT images from different focal sizes and reconstruction filter types.
EN
Metal foams are relatively novel materials that due to excellent mechanical, thermal, and insulation properties have found wide usage in different engineering applications such as energy absorbers, bone substitute implants, sandwich structure cores, etc. In common numerical studies, the mechanical properties of foams are usually introduced to FE models by considering homogenized uniform properties in different parts of a foamy structure. However, in highly irregular foams, due to complex micro-geometry, considering a uniform mechanical property for all portions of the foam leads to inaccurate results. Modeling the micro-architecture of foams enables better following of the mechanisms acting in micro-scale which would lead to more accurate numerical predictions. In this study, static mechanical behavior of several closed-cell foam samples has been simulated and validated against experimental results. The samples were first imaged using a multi-slice CT-Scan device. Subsequently, experimental compression tests were carried out on the samples using a uniaxial compression testing machine. The CT data were then used for creating micro-scale 3D models of the samples. According to the darkness or brightness of the CT images, different densities were assigned to different parts of the micro-scale FE models of the foam samples. Depending on density of the material at a point, the elastic modulus was considered for it. Three different formulas were considered in different simulations for relating the local elastic modulus of the foam material to density of the foam material at that point. ANSYS implicit solver was used for the simulations. Finally, the results of the FE models based on the three formulas were compared to each other and to the experimental results to show the best formula for modeling the closed-cell foams.
EN
With the constant growth of computer simulation significance in science and engineering, many new fields are gaining access to these powerful tools. One of these new disciplines is medicine. Human body provides many fascinating areas that could be researched from completely different angle and could gain all the benefits that computer simulation offers. For example blood flow in human arteries can be studied using Computational Fluid Dynamics. Researchers of cerebrovascular disorders can get an insight view on physical phenomena of blood flow and study risk factors of embolism or cerebral aneurysm. Main issue in using computer simulation in medical research is the complexity and uniqueness of geometry that needs to be handled. After all, human body is one of the most sophisticated engineering systems created by nature. In this paper, a workflow for creating a numerical mesh for CFD simulation purposes is shown. Application shown in the example focus on cerebral arteries blood flow simulation. Numerical mesh is generated based on CT scan of patient’s head, using freeware tools Slicer3D and AutoIt3 as well as commercial software ANSYS Fluent Meshing 15.0.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.