Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  CRLB
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Localization is one of the oldest mathematical and technical problems that have been at the forefront of research and development for decades. In a wireless sensor network (WSN), nodes are not able to recognize their position. To solve this problem, studies have been done on algorithms to achieve accurate estimation of nodes in WSNs. In this paper, we present an improvement of a localization algorithm namely Gaussian mixture semi-definite programming (GM-SDP-2). GMSDP is based on the received signal strength (RSS) to achieve a maximum likelihood location estimator. The improvement lies in the placement of anchors through the Fuzzy C-Means clustering method where the cluster centers represent the anchors’ positions. The simulation of the algorithm is done in Matlab and is based on two evaluation metrics, namely normalized root-mean-squared error (RMSE) and cumulative distribution function (CDF). Simulation results show that our improved algorithm achieves better performance compared to those using a predetermined placement of anchors.
EN
This paper presents a simple DFT-based golden section searching algorithm (DGSSA) for the single tone frequency estimation. Because of truncation and discreteness in signal samples, Fast Fourier Transform (FFT) and Discrete Fourier Transform (DFT) are inevitable to cause the spectrum leakage and fence effect which lead to a low estimation accuracy. This method can improve the estimation accuracy under conditions of a low signal-to-noise ratio (SNR) and a low resolution. This method firstly uses three FFT samples to determine the frequency searching scope, then – besides the frequency – the estimated values of amplitude, phase and dc component are obtained by minimizing the least square (LS) fitting error of three-parameter sine fitting. By setting reasonable stop conditions or the number of iterations, the accurate frequency estimation can be realized. The accuracy of this method, when applied to observed single-tone sinusoid samples corrupted by white Gaussian noise, is investigated by different methods with respect to the unbiased Cramer-Rao Low Bound (CRLB). The simulation results show that the root mean square error (RMSE) of the frequency estimation curve is consistent with the tendency of CRLB as SNR increases, even in the case of a small number of samples. The average RMSE of the frequency estimation is less than 1.5 times the CRLB with SNR = 20 dB and N = 512.
EN
Many of the safety related applications that can be facilitated by Dedicated Short Range Communications (DSRC), such as vehicle proximity warnings, automated braking (e.g. at level crossings), speed advisories, pedestrian alerts etc., rely on a robust vehicle positioning capability such as that provided by a Global Navigation Satellite System (GNSS). Vehicles in remote areas, entering tunnels, high rise areas or any high multipath/ weak signal environment will challenge the integrity of GNSS position solutions, and ultimately the safety application it underpins. To address this challenge, this paper presents an innovative application of Cooperative Positioning techniques within vehicular networks. CP refers to any method of integrating measurements from different positioning systems and sensors in order to improve the overall quality (accuracy and reliability) of the final position solution. This paper investigates the potential of the DSRC infrastructure itself to provide an intervehicular ranging signal that can be used as a measurement within the CP algorithm. In this paper, time-based techniques of ranging are introduced and bandwidth requirements are investigated and presented. The robustness of the CP algorithm to inter-vehicle connection failure as well as GNSS dropouts is also demonstrated using simulation studies. Finally, the performance of the Constrained Kalman Filter used to integrate GNSS measurements with DSRC derived range estimates within a typical VANET is described and evaluated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.