The development of knowledge engineering and, within its framework, of data mining or knowledge mining from data should result in the characteristics or descriptions of objects, events, processes and/or rules governing them, which should satisfy certain quality criteria: credibility, accuracy, verifiability, topicality, mutual logical consistency, usefulness, etc. Choosing suitable mathematical models of knowledge mining from data ensures satisfying only some of the above criteria. This paper presents, also in the context of the aims of The Committee on Data for Science and Technology (CODATA), more general aspects of knowledge mining and popularization, which require applying the rules that enable or facilitate controlling the quality of data.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.