Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  CO2 capture system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Economic evaluation of A-USC power plant with CO2 capture unit
EN
Achieving CO2 emission control while keeping electricity prices competitive is one of the most important economic and technical challenges. The strategy for lowering the CO2 emission from the coal-based power plants includes first of all raising electricity generation efficiency. Currently, steam temperatures in ultra-supercritical (USC) power plants are limited to approximately 627ºC by the use of the most advanced commercially available ferritic steels. To go to higher temperatures, high-nickel alloys must be used. The nickel alloys are at an advanced stage of development and are expected to be available to support construction of a demonstration plant in Europe in 2021. For pulverized coal (PC) plants the development means progressing to advanced ultra-supercritical (A-USC) steam conditions - 35MPa/700/720ºC. It turned out that the concept consists in gradually raising the live steam temperature and pressure can become economically unjustified. Cost-effectiveness of new investments can be provided only by a significant increase in the efficiency of electricity generation. In the paper the economic evaluation of 900 MW PC unit is presented. The main aim is to compare the cost of electricity generation in USC (28MPa/600/620ºC) and A-USC (35MPa/700/720ºC) power unit. The variants with CO2 capture installation by chemical absorption MEA are considered. Compared to a USC design, the capital cost of the A-USC PC plant will be higher, but the operating cost will be lower. Because of the higher efficiency of the A-USC plant, the differential in operating cost increases as fuel price increases and CO2 cost charges are included.
EN
This paper presents a general description of the energetic absorption method for the capture of the carbon dioxide in an exhaust gas. This technology requires significant amount of heat supplied to the capture process. The coupling of the CO2 capture system with an existing power plant requires the rebuilding of the turbine, its heat and cooling system. The paper describes the possibilities to complete such tasks. The decrease of the efficiency of the power plant due to the application of the CO2 capture system may be lowered when the waste heat from the exhaust gases is recovered. The possible solutions in this scope are under discussion here.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.