Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  CMDB propellant
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Abstract: The polymorphic transition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (CL-20) is influenced by the materials and conditions used in the preparation of propellants, and limits the application of ε-CL-20 in solid propellants. In the present work, the effect of dinitroxydiethylnitramine (DINA) on the polymorphic transition of ε-CL-20 in CMDB propellants was investigated by Raman spectroscopy and the Calvet microcalorimeter method. The performance of propellants with CL-20 as affected by DINA was studied by the theoretical prediction of their energetic parameters, stability, combustion, and mechanical tests, respectively. The results showed that the polymorphic transition temperature of ε-CL-20 to α-CL-20 can be reduced to 75 °C by DINA. Expansion of the crystal volume during the process of the ε-CL-20 to α-CL-20 transition will produce obvious cracks in the surface of the crystals. NC/NG can inhibit the effect of DINA on the polymorphic transition of ε-CL-20. The theoretically predicted results indicated that adding DINA will not lower the energy level of CMDB propellants containing CL-20. The DSC and VST results showed that CL-20 has good compatibility and thermal stability with DINA. The burning rate tests revealed that adding DINA decreases the burning rates of CMDB propellants containing CL-20. Mechanical property testing showed that adding DINA can clearly improve the mechanical properties of CMDB propellants containing CL-20. The results of these investigations suggested that DINA has no effect on the crystalline stability of ε-CL-20 in the solventless extrusion process, which contributes to a significant understanding of practical applications and provides guidance for applied research on the use of CL-20 in propellants.
EN
A novel Composite Modified Double Base (CMDB) propellant, formed by mechanically mixing aluminium/polytetrafluorethylene (Al/PTFE) powders, was prepared through a rolling process. A variety of tests, such as tensile properties, particle size analysis etc., were carried out to study the influence of PTFE on the CMDB propellant properties. The PTFE deformed from particles to fibres under a uniform shear force, forming a fibre network which greatly improved the propellant’s mechanical properties. Compared to that of the CMDB propellant without PTFE, the elongation of the propellant containing 6% PTFE was increased by 26 times, and moreover, the impact strength was enhanced by 326% at −40 °C. Significantly, the propellant friction and impact sensitivities were reduced by 75.8% and 35.6%, respectively. In addition, the presence of PTFE in the propellant resulted in fluorination of the Al. The gaseous combustion product AlF3 reduced the propellant combustion agglomeration. Consequently, PTFE significantly promoted the propellant’s mechanical performance, decreased the shock (friction, impact) sensitivity and reduced combustion agglomeration.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.