Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  CDOM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Chromophoric Dissolved Organic Matter (CDOM) is a vital water constituent in aquatic ecosystems that contributes to water colour, affects light penetration, and impacts primary production. This study aims to determine the spatial and monsoonal variability of CDOM absorption properties in the Likas estuary, characterise the source of CDOM, and investigate the correlations between CDOM absorption properties and salinity. Likas estuary is a small estuary located in Kota Kinabalu city on the west coast of Sabah, facing the South China Sea. A mangrove ecosystem surrounds it with manufactured structures such as residential areas and public facilities. Surface water samples were collected at 19 stations: upstream of rivers to the river mouth and coastal area during spring tides every month, from June 2018 to July 2019, for 14-months. The distribution of aCDOM(440) in the study area is predictable as a signature in a coastal area with a decreasing gradient from the upstream towards coastal water (0.29 ± 0.19 m−1 to 1.05 ± 0.39 m−1). There are increasing spatial patterns of spectral slopes S275-295 and SR. However, S350-400 and S300-600 declined spatial gradients from the upstream to coastal water. Thus, S300-600 indicates a linear relationship between aCDOM(440), which unconventional results in coastal water. We suspect this is due to a small coverage of the study site with a distance of 0.5 m intervals of each station. This could be why the S300-600 had constant values throughout the study area (with no statistical difference between stations). In addition, S300-600 was merely varied in the stations located at the river mouth and coastal water. Based on the spectral slope ratio (SR), most of the stations located in the Darau, Inanam, and Bangka-Bangka rivers had SR values less than 1. Hence, CDOM in these stations is a terrestrial-dominated source. Therefore, from our observations during the study period, monsoonal variation could alter the source of CDOM in the study area.
EN
We present the characterisation and distribution of organic matter (OM) within the sea surface microlayer (SML) and underlying water (ULW) collected in October 2015 at nine stations in the Baltic Sea, Gulf of Gdańsk, encompassing the Vistula River plume. The salinity of >7 throughout the transect indicated Vistula plume was possibly displaced westward by the preceding northerly and easterly winds between 5.7 and 10.7 ms–1 during the sampling campaign. Spectral analysis pointed to the highest contribution of aromatic and high molecular weight molecules (lowest spectral slope (SR) ratios and highest absorption coefficient at 254 nm (aCDOM(254)) at the first two stations near the river mouth, demonstrating a very limited influence of the river plume. Concentrations of surface-active organic substances (SAS) ranged from 0.28 to 0.60 mg L−1 in eq. Triton-X-100 in SML, and from 0.22 to 0.47 mg L−1 in eq. Triton-X-100 in the ULW, while POC concentrations ranged from 0.27 to 0.84 mg L−1 in SML and from 0.20 to 0.37 mg L−1 in ULW. Enrichment of SAS and POC detected at the highest wind speeds indicates rapid SML recovery by OM transported from the ULW. Low lipids to POC contribution, on average 5% and 7% in SML and ULW respectively, points to eutrophic conditions. Statistically significant negative correlation between SR and the Lipid:PIG ratio in SML and ULW suggests the production of lower molecular weight OM by phytoplankton living under favourable environmental conditions. Accumulation of lipid reserves triacylglycerols (TG) in the SML indicates more stressful plankton growth conditions compared to ULW.
EN
Absorption coefficient partitioning algorithms (APAs) were developed to partition the total absorption coefficient (a(λ)) or total non-water absorption coefficient (anw(λ)) into the absorption subcomponents, i.e., absorption due to phytoplankton aph(λ), colored dissolved organic matter (CDOM) aƍ(λ) and non-algal particulate matter ad(λ), λ is the wavelength. Absorption coefficients of CDOM and non-algal particulate matter are generally combined due to a similarity in exhibited spectral shape and represented as colored detrital matter (CDM) absorption coefficient, adƍ(λ). This study focuses on the applicability of five APAs Schofield's, Lin's, Zhang's, Stacked Constraints Model (SCM) and Generalized Stacked Constraints Model (GSCM), in deriving the absorption subcomponents from anw(λ) in optically complex coastal waters of Kochi and Goa, India. The average spectral Mean Absolute Percentage Errors (MAPE) obtained for all models in the retrieval of aph(λ), ad(λ), aƍ(λ) and adƍ(λ) lie in the ranges of 26-44%, 37-45%, 34-65% and 42-56%. Slopes of adƍ(λ), aƍ(λ) and ad(λ) as indicated by Sdƍ, Sƍ and Sd are derivable from GSCM, Schofield and Lin's models only. GSCM model exhibited good retrieval capability of Sd with MAPE values of 22% and a correlation coefficient of 0.74. In retrieval of Sƍ parameter, none of the models demonstrated satisfactory performance. Overall, the GSCM and Schofield's models demonstrated good performance in the retrieval of absorption subcomponents, aph(λ), adƍ(λ), ad(λ) and Sd. Effect of applying baseline correction to ad(λ) on model performance is studied. Tuning with in situ data can further improve the absorption subcomponent and slope parameter retrieval capability of the models.
EN
Water samples collected from the Jiaozhou Bay every two months between April 2016 and February 2017 were analyzed for dissolved organic carbon (DOC), particulate organic carbon (POC), total dissolved carbohydrates (TCHO), total hydrolyzed amino acids (THAA), and chromophoric dissolved organic matter (CDOM) to explore the biogeochemical processes of dissolved organic matter (DOM) in anthropogenic estuarine and coastal environments. In addition, nutrients, chlorophyll a and COD (chemical oxygen demand) in these samples were also analyzed. All parameters exhibited temporal and spatial variations: POC 0.13-22.40 mg/L (average 1.75 mg/L), DOC 0.98-32.75 mg/L (average 5.04 mg/L), COD 0.23-7.58 mg/L (average 1.67 mg/L), TCHO 0.34-14.09 µM (average 3.18 µM), THAA 0.89-8.30 µM (average 4.04 µM), and the absorption coefficient a(355) of CDOM 0.23-16.35 m − 1 (average 3.09 m − 1). The temporal and spatial variations in the concentrations of TCHO, THAA, and DOC implied that the DOM in the study areas had a relatively higher biochemical activity. The canonical correspondence analysis (CCA) and maximal information coefficient (MIC) revealed that seasonal variations in temperature and the phosphate concentration were the dominant factors regulating the DOM distributions in Jiaozhou Bay, while riverine inputs and in situ reproduction mainly controlled the DOM compositions.
EN
The in situ remote sensing reflectance (Rrs) and optically active substances (OAS) measured using hyperspectral radiometer, were used for optical classification of coastal waters in the southeastern Arabian Sea. The spectral Rrs showed three distinct water types, that were associated with the variability in OAS such as chlorophyll-a (chl-a), chromophoric dissolved organic matter (CDOM) and volume scattering function at 650 nm (β650). The water types were classified as Type-I, Type-II and Type-III respectively for the three Rrs spectra. The Type-I waters showed the peak Rrs in the blue band (470 nm), whereas in the case of Type-II and III waters the peak Rrs was at 560 and 570 nm respectively. The shifting of the peak Rrs at the longer wavelength was due to an increase in concentration of OAS. Further, we evaluated six bio-optical algorithms (OC3C, OC4O, OC4, OC4E, OC3M and OC4O2) used operationally to retrieve chl-a from Coastal Zone Colour Scanner (CZCS), Ocean Colour Temperature Scanner (OCTS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), MEdium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and Ocean Colour Monitor (OCM2). For chl-a concentration greater than 1.0 mg m−3, algorithms based on the reference band ratios 488/510/520 nm to 547/550/555/560/565 nm have to be considered. The assessment of algorithms showed better performance of OC3M and OC4. All the algorithms exhibited better performance in Type-I waters. However, the performance was poor in Type-II and Type-III waters which could be attributed to the significant co-variance of chl-a with CDOM.
EN
An extensive data series of salinity, nutrients and coloured dissolved organic material (CDOM) was collected in the Skagerrak, the northern part of the Kattegat and off the Jutland west coast in April each year during the period 1996–2000, by the Institute of Marine Research in Norway. In this month, after the spring bloom, German Bight Water differs from its surrounding waters by a higher nitrate content and higher nitrate/phosphate and nitrate/silicate ratios. The spreading of this water type into the Skagerrak is of special interest with regard to toxic algal blooms. The quantification of the spatial distributions of the different water types required the development of a new algorithm for the area containing the Norwegian Coastal Current, while an earlier Danish algorithm was applied for the rest of the area. From the upper 50 m a total of 2227 observations of salinity and CDOM content have been used to calculate the mean concentration of water from the German Bight, the North Sea (Atlantic water), the Baltic Sea and Norwegian rivers. The Atlantic Water was the dominant water type, with a mean concentration of 79%, German Bight Water constituted 11%, Baltic Water 8%, and Norwegian River Water 2%. At the surface the mean percentages of these water types were found to be 68%, 15%, 15%, and 3%, respectively. Within the northern part of the Skagerrak, closer to the Norwegian coast, the surface waters were estimated to consist of 74% Atlantic Water, 20% Baltic Water, and 7% Norwegian River Water. The analysis indicates that the content of German Bight Water in this part is less than 5%.
7
Content available remote Two models for absorption by coloured dissolved organic matter (CDOM)
EN
The standard exponential model for CDOM absorption has been applied to data from diverse waters. Absorption at 440 nm (ag440) ranged between close to zero and 10 m-1, and the slope of the semilogarithmic absorption spectrum over a minimum range of 400 to 440 nm (s440) ranged between < 0.01 and 0.04 nm-1. No relationship was found between ag440 or s440 and salinity. Except in the southern Baltic, s440 was found to have a broad distribution (0.0165 š 0.0035), suggesting that it should be introduced as an additional variable in bio-optical models when ag440 is large. An alternative model for CDOM absorption was applied to available high quality UV-visible absorption spectra from the Wisla river (Poland). This model assumes that the CDOM absorption spectrum comprises distinct Gaussian absorption bands in the UV, similar to those of benzene. Five bands were fit to the data. The mean central energy of all bands was higher in early summer (E~7.2, 6.6, 6.4, 6.2 and 5.5 eV or 172, 188, 194, 200 and 226 nm) than in winter. The higher energy bands were found to decay in both height and width with increasing salinity, while lower energy bands broadened with increasing salinity. s440 was found to be correlated with shape parameters of the bands centred at 6.4 and 5.5 eV. While the exponential model is convenient for optical modelling and remote sensing applications, these results suggest that the Gaussian model offers a deeper understanding of chemical interactions affecting CDOM molecular structure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.