Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  CCUS
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W ostatnich latach obserwuje się wzrost zainteresowania technologiami wychwytu, gospodarczego wykorzystania i składowania dwutlenku węgla (ang. carbon capture, utilization and storage – CCUS) we wszystkich sektorach przemysłu, gdzie inne metody w zakresie znaczącej redukcji emisji dwutlenku węgla (CO2) są niemożliwe, technologicznie niedostępne lub zbyt kosztowne. Aby ograniczyć wzrost globalnego ocieplenia i osiągnąć wyznaczone cele klimatyczne, skala technologii z łańcucha CCUS zgodnie z najnowszymi analizami musi wzrosnąć do gigaton sekwestrowanego CO2 rocznie. Technologie CCUS są często wspominane również w kontekście dążenia do osiągnięcia zerowego bilansu CO2 do roku 2050, gdzie innowacyjne rozwiązania oparte o wytwarzanie bioenergii połączone z wychwytem CO2 lub bezpośrednie usuwanie dwutlenku węgla z atmosfery mogą stanowić cenny wkład w osiągnięcie neutralności klimatycznej poprzez generowanie tzw. „ujemnych” emisji. Konieczność implementacji technologii z łańcucha CCUS jest często podkreślana przez uznane, międzynarodowe organizacje zajmujące się tematyką w obszarze nowych technologii, energetyki czy zmian klimatu. W związku z tym, niniejszy artykuł traktuje o rozwiązaniach w zakresie technologii łańcucha CCUS oraz skupia się na analizie stanu obecnego z uwzględnieniem perspektywy krajowej.
EN
The increase of interests concerning the carbon capture, utilization and storage (CCUS) is seen current years in such industry sectors, in which other methods of a significant reduction of carbon dioxide (CO2) are not possible, technologically inaccessible or too costly. In order to limit the global warming and to achieve the determined climatic goals, the technology scale from the CCUS chain, according to the most recent analyses, must increase to gigatons of sequestered CO2 annually. CCUS technologies are often mentioned also in a context of striving to achieve zero CO2 balance to the year 2050. Innovatory solutions based on bioenergy production, joined with the capture of CO2 or a direct removal of carbon dioxide from the atmosphere, can constitute a valuable contribution in achieving the climatic neutrality by generating the so-called ‘negative’ emissions. The necessity of implementations of technologies from the CCUS chain is often emphasised by recognized international organisations dealing with problems of new technologies, energy and climate changes. In relation to that, the hereby paper concerns solutions in the field of CCUS chain technology and focuses on the analysis of the current state with taking into account the national perspective.
EN
According to (McKinsey & Company, 2020), drilling and extraction operations are responsible for 10% of approximately 4 billion tons of CO2 emitted yearly by Oil and Gas sector. To lower carbon emissions, companies used different strategies including electrifying equipment, changing power sources, rebalancing portfolios, and expanding carbon-capture-utilization-storage (CCUS). Technology evolution with digital transformation strategy is essential for reinventing and optimizing existing workflow, reducing lengthy processes and driving efficiency for sustainable operations. Details subsurface studies take up-to 6–12 months, including seismic & static analysis, reserve estimation and simulation to support drilling and extraction operations. Manual and repetitive processes, aging infrastructure with limited computing-engine are factors for long computation hours. To address subsurface complexity, hundred-thousand scenarios are simulated that lead to tremendous power consumption. Excluding additional simulation hours, each workstation uses 24k kWh/month for regular 40 hours/month and produces 6.1kg CO2. Machine Learning (ML) become crucial in digital transformation, not only saving time but supporting wiser decision-making. An 80%-time-reduction with ML Seismic and Static modeling deployed in a reservoir study. Significant time reduction from days-tohours-to-minutes with cloud-computing deployed to simulate hundreds-thousands of scenarios. These time savings help to reduce CO2-emissions resulting in a more sustainable subsurface workflow to support the 2050 goal.
PL
Osiągnięcie przez Unię Europejską neutralności klimatycznej do 2050 roku wymaga transformacji i modyfikacji europejskiego systemu energetycznego. Wykorzystanie w tym celu wodoru ma pozwolić na dekarbonizację oraz redukcję emisji gazów cieplarnianych. Priorytetem jest otrzymywanie odnawialnego wodoru (green hydrogrn). W okresie przejściowym dopuszcza się także wykorzystanie wodoru niskowęglowego (blue hydrogen).
EN
The increased use of fossil fuels and growing greenhouse gas emissions leads to environmental problems. To reach climate neutrality by 2050 it is necessary to transform the EU’s energy system. The EU Strategy for Energy System Integration [3], the report published by the EU Commission in 2020, provides the pathway for a new integrated energy system transition. In the new integrated energy system, the development of clean hydrogen (green hydrogen) using renewable energy plays a main role. However, in the transition period, hydrogen based on fossil fuels (blue hydrogen) will be also used to decrease emissions and develop a manageable market. The EU Hydrogen Strategy [4] presents a three step plan to take advantage of hydrogen potential. Hydrogen has received worldwide attention as a clean energy solution with many applications in the industry, power, and transportation sectors. Hydrogen is a carbon free carrier and does not emit any pollution. Its role is essential for the EU’s commitment to achieve carbon neutrality by proper investments, regulations, research, and innovations. According to these plans, the constructed electrolyzers will be used for the production of renewable green hydrogen, then local hotspots will be connected for end users into a large European hydrogen infrastructure. Finally, mature clean hydrogen technologies will be utilized at a large scale. Generally, the European investments by 2050 in renewable green hydrogen are about €180 - 470 billion, and for low carbon fossil based blue hydrogen €3 - €18 billion [14]. As predicted, clean hydrogen may meet 24% of world energy requirements by 2050. This study presents an energy transition pathway for sustainable development by means of hydrogen energy. Detailed information on hydrogen production methods and costs, storage, and applications is provided. The new technological directions in hydrogen production, storage, and utilization are described. The integration of hydrogen production from fossil fuels with CCS/CCUS technologies is discussed. Linking natural gas reforming with CCUS technologies is the cheapest way to decarbonize the EU energy system by 2050 in comparison with the all electric approach. 80 to 90% of CO2 emissions can be removed using CCUS technologies [16]. Investment costs of hydrogen production by electrolysis of water are much higher than for hydrogen production from natural gas integrated with CCUS processes [15]. CCUS technologies represent strategic value in the transition process to climate neutrality. CCUS can favour hydrogen production from natural gas or coal and provide low carbon hydrogen at a lower cost in the near future. Currently, the cost of hydrogen production integrated with CCUS is much lower than hydrogen production based on electrolysis and renewable sources of energy. It is estimated that CCUS integrated with hydrogen production will be a competitive solution even with the declining costs of electrolyzers and renewable electricity. The EU policy ultimately insists on the production and development of renewable hydrogen (green hydrogen) and hydrogen produced from fossil fuels coupled with CCUS technologies (blue hydrogen).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.