We consider particle weight functions which assign weights to certain words. Given a cellular automaton, we search for particle weight functions, for which the total weights of configurations do not increase with time. In this case the weight of a shift-invariant Borel probability measure does not increase either, so we get a Ljapunov function on the space of measures. We give some conditions which ensure that the weight of a measure converges to zero. In particular we prove that this happens in the elementary cellular automaton rule number 18 and in a variant of the Gacs-Kurdyumov-Levin cellular automaton.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.