In this paper, we study the concept of exponential (in)stability in mean for stochastic skew-evolution semiflows, in which the exponential (in)stability in the classical sense is replaced by an average with respect to a probability measure. Our paper consists of three major results. The first is to obtain Datko-type characterizations for the exponential stability in mean of stochastic skew-evolution semiflows. Next, we acquire Datko-type characterizations for the exponential instability in mean by extending the stability techniques. The last is to extend Lyapunov-type equations to the case of exponential (in)stability in mean.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let X be a separable Banach function space on the unit circle T and let H[X] be the abstract Hardy space built upon X.We show that the set of analytic polynomials is dense in H[X] if the Hardy–Littlewood maximal operator is bounded on the associate space X'. Fis result is specified to the case of variable Lebesgue spaces.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.