Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  BAY method
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the article, the new method of modelling of Rod Vortex Generators (RVGs) was proposed. RVGs are inclined rods, mounted in boundary layer used to flow control. RVGs were intensively investigated in Institute of Fluid-Flow Machinery in Gdansk, Poland. The research results indicate high potential of RVGs to flow control in wide range of Mach numbers (Mach 0.3-1.45) in the main flow. Due to the flow structure details generated by RVG, it is required to create fine grids in the vicinity of RVGs, which increase the computational cost. In order to overcome this difficulty and reduce computational cost the new numerical models of RVGs are proposed, which use the modification of BAY model. Using BAY model it is not needed to resolve the shape of RVG in detail and it is possible to use orthogonal meshes. The BAY model was originally proposed to predict flows behind thin-plate vortex generators. This model works by adding momentum source term to Reynolds-Averaged Navier-Stokes equations in ANSYS Fluent. The BAY model spatial vectors orientation was modified and some simplifications were performed. The model was calibrated and simulations were carried out for the single rod. The results and effectiveness of modified BAY model were compared with wind-tunnel experiment results and grid-resolved model.
EN
Interactions between viscous and transonic effects in air flow around a laminar wing were investigated computationally by means of the solution of unsteady Reynolds-averaged Navier-Stokes Equations. The subject is important from the point of view of applications of Natural Laminar Flow technology in modern, economically efficient passenger aircraft. The research was focused on simulations and analyses of influence of turbulence induced by micro vortex generators on intensity of harmful transonic phenomena like strong shock waves and buffet. Two ways of modelling of the effects of turbulators – the micro vortex generators were taken into consideration. The first way consisted in resolving the shape and inclination angle of the generator in the grid over airfoil and setting the non-slip wall boundary condition on the surface of the generator. The second way, taking advantage of the BAY model of vortex generator, was implemented on orthogonal grid without the need of resolving the shape of the vortex generator in the grid. Calibration of the BAY model was aimed at producing similar distribution of vorticity and velocity circulation behind the model of the vortex generator, as obtained for the grid-resolved model of the vortex generator. The calibration procedure resulted, however, in overestimated turbulisation of the boundary layer in the BAY model, compared to the effects of the grid-resolved vortex generator. The flow simulations indicated, however, that turbulisation of boundary layer induced by micro vortex generators can reduce or eliminate the oscillation of strong shock wave and buffet in off-design conditions and that further adjusting of the BAY model is an efficient strategy for modelling the interactions between viscous and transonic effects in air flow around a laminar wing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.