Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Atlantyk Północny
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Praca omawia zmiany powierzchni lodów na Morzu Karskim i mechanizmy tych zmian. Scharakteryzowano przebieg zmian zlodzenia, ustalając momenty skokowego zmniejszenia się letniej powierzchni lodów. Rozpatrzono wpływ cyrkulacji atmosferycznej, zmian temperatury powietrza i zmian zasobów ciepła w wodach na zmiany zlodzonej tego morza. Analizy wykazały, że wszystkie zmienne opisujące zarówno stan zlodzenia jak i stan elementów klimatycznych są ze sobą wzajemnie powiązane przez różnego rodzaju sprzężenia zwrotne. W rezultacie tworzy się rekurentny system, w którym zmiany powierzchni lodów, wpływając na przebieg innych elementów systemu (temperaturę powietrza, temperaturę wody powierzchniowej) w znacznej części same sterują swoim rozwojem. Zmiennością całego tego systemu sterują zmiany intensywności cyrkulacji termohalinowej (THC) na Atlantyku Północnym, dostarczając do niego zmienne ilości energii (ciepła). Reakcja systemu zlodzenia Morza Karskiego na zmiany natężenia THC następuje z 6.letnim opóźnieniem.
EN
The work discusses the changes in the ice extent on the Kara Sea in the years 1979-2015, i.e. in the period for which there are reliable satellite data. The analysis is based on the average monthly ice extent taken from the database AANII (RF, St. Peterburg). 95% of the variance of average annual ice extent explains the variability of the average of ice extent in ‘warm' season (July-October). Examination of features of auto-regressive course of changes in ice extent shows that the extent of the melting ice area between June and July (marked in the text RZ07-06) can reliably predict the ice extent on the Kara Sea in August, September, October and November as well as the average ice extent in a given year. Thus the changes in ice extent can be treated as a result of changes occurring within the system. Analysis of the relationship of changes in ice extent and variable RZ07-06 with the features of atmospheric circulation showed that only changes in atmospheric circulation in the Fram Strait (Dipole Fram Strait; variable DCF03-08) have a statistically significant impact on changes in ice extent on the Kara Sea and variable RZ07-06. The analysis shows no significant correlation with changes in ice extent or AO (Arctic Oscillation), or NAO (North Atlantic Oscillation). Variable RZ07-06 and variable DCF03-08 are strongly correlated and their changes follow the same pattern. Analysis of the relationship of changes in ice extent and variable RZ07-06 with changes in air temperature (the SAT) showed the presence of strong relationships. These correlations differ significantly depending on the region; they are much stronger with changes in air temperature in the north than in the south of the Kara Sea. Temperature of cold period (average temperature from November to April over the Kara Sea, marked 6ST11-04) has a significant effect on the thickness of the winter ice and in this way the thickness of ice in the next melting season becomes part of the "memory" (retention) of past temperature conditions. The thickness of the winter ice has an impact on the value of the variable RZ07-06 and on changes in ice extent during the next ‘warm’ season. As a result, 6ST11-04 explains 62% of the observed variance of the annual ice extent on the Kara Sea. SAT variability in the warm period over the Kara Sea (the average of the period July-October, marked 6ST07-10) explains 73% of the variance of annual ice extent. SAT variability of the N part of the Kara Sea (Ostrov Vize, Ostrov Golomjannyj), which explains 72-73% of the variance ice extent during this period, has particularly strong impact on changes in ice extent during warm period. These stations are located in the area where the transformed Atlantic Waters import heat to the Kara Sea. Analysis of the impact of changes in sea surface temperature (SST) variability on sea ice extent indicated that changes in SST are the strongest factor that has influence on ice extent. The variability of annual SST explains 82% of the variance of annual ice extent and 58% of the variance of the variable RZ07-06. Further analysis showed that the SAT period of warm and annual SAT on the Kara Sea are functions of the annual SST (water warmer than the air) but also ice extent. On the other hand, it turns out that the SST is in part a function of ice extent. All variables describing the ice extent and its changes as well as variables describing the nature of the elements of hydro-climatic conditions affecting the changes in ice extent (atmospheric circulation, SAT, SST) are strongly and highly significantly related (Table 9) and change in the same pattern. In this way, the existence of recursion system is detected where the changes in ice extent eventually have influence on ‘each other’ with some time shift. The occurrence of recursion in the system results in very strong autocorrelation in the course of inter-annual changes in ice extent. Despite the presence of recursion, factors most influencing change in ice extent, i.e. the variability in SST (83% of variance explanations) and variability in SAT were found by means of multiple regression analysis and analysis of variance. Their combined impact explains 89% of the variance of the annual ice extent on the Kara Sea and 85% of the variance of ice extent in the warm period. The same rhythm of changes suggests that the system is controlled by an external factor coming from outside the system. The analyses have shown that this factor is the variability in the intensity of the thermohaline circulation (referred to as THC) on the North Atlantic, characterized by a variable marked by DG3L acronym. Correlation between the THC signal and the ice extent and hydro-climatic variables are stretched over long periods of time (Table 10). The system responds to changes in the intensity of THC with a six-year delay, the source comes from the tropical North Atlantic. Variable amounts of heat (energy) supplied to the Arctic by ocean circulation change heat resources in the waters and in SST. This factor changes the ice extent and sizes of heat flux from the ocean to the atmosphere and the nature of the atmospheric circulation, as well as the value of the RZ07-06 variable, which determines the rate of ice melting during the ‘warm’ season. A six-year delay in response of the Kara Sea ice extent to the THC signal, compared to the known values of DG3L index to the year 2016, allows the approximate estimates of changes in ice extent of this sea by the year 2023. In the years 2017 to 2020 a further rapid decrease in ice extent will be observed during the ‘warm' period (July-October), in this period in the years 2020-2023 ice free conditions on the Kara Sea will prevail. Ice free navigation will continue from the last decade of June to the last decade of October in the years 2020-2023. Since the THC variability includes the longterm, 70-year component of periodicity, it allows to assume that by the year 2030 the conditions of navigation in the Kara Sea will be good, although winter ice cover will reappear.
PL
Praca omawia związki między zmiennością intensywności AMOC (Atlantic Meridional Overturning Circulation) a temperaturą powietrza w Polsce. Badany okres obejmuje lata 1961-2010. Zmienność AMOC charakteryzuje opracowany przez autora wskaźnik DG3L (jego przebieg – patrz ryc. 5). Stwierdzono występowanie na obszarze Polski umiarkowanej siły, ale istotnych statystycznie ( r od +0,45 do 0,55) związków temperatury rocznej z tym wskaźnikiem (ryc. 1 i 2). Analiza związków miesięcznych wykazała występowanie w niektórych miesiącach roku (ryc. 3, tab. 1) istotnych statystycznie (p < 0,05) korelacji między DG3L a temperaturą na części lub całym obszarze kraju. Najsilniejsze i obejmujące cały obszar Polski korelacje występują w kwietniu, lipcu i sierpniu (ryc. 3; IV, VII, VIII). Stwierdzono również występowanie słabszych związków asynchronicznych, w których zmiany DG3L wyprzedzają w czasie o rok zmiany temperatury. Badania nad przyczynami występowania tych związków wykazały, że wraz ze wzrostem intensywności AMOC rośnie frekwencja wystąpienia makrotypu cyrkulacji środkowotroposferycznej W i jednocześnie maleje frekwencja makrotypu E według klasyfikacji Wangengejma-Girsa (tab. 2, ryc. 4). Stanowi to odbicie rozkładu przestrzennego zasobów ciepła w Atlantyku Północnym. Każdy z tych makrotypów, poprzez powiązane z nim sytuacje synoptyczne (pola SLP), modyfikuje kierunki napływu mas nad Polskę, zmieniając udział składowych strefowych i merydionalnych wiatru geostroficznego na dolnych poziomach. Wzrost frekwencji makrotypu W pociąga za sobą wzrost częstości napływu powietrza z W i S (tab. 3), a jednocześnie ogranicza frekwencję makrotypu E, z którym związane są napływy z kierunków N i E, co ostatecznie prowadzi do zmian temperatury powietrza w kierunku jej wzrostu. Z gwałtownym wzrostem natężenia AMOC po roku 1988 związany jest równie gwałtowny wzrost frekwencji makrotypu W i jednoczesny spadek frekwencji makrotypu E. Doprowadziło to do wzrostu częstości i intensywności napływów powietrza z SW i W, co skutkuje zróżnicowanym co do wartości wzrostem temperatury we wszystkich miesiącach roku. Ograniczenie frekwencji makrotypu E w chłodnej porze roku (ryc. 6) zmieniło charakter zim, w kierunku eliminacji zim ostrych i protekcji zim łagodnych. W rezultacie po roku1988 doszło do zmiany reżimu termicznego zim, co w konsekwencji zmieniło przebieg temperatury rocznej (nagły wzrost o 1°C i zmniejszenie zakresu jej zmienności (patrz ryc. 1 i 7). Konkluzją pracy jest stwierdzenie, że zmiany stanu termicznego Atlantyku Północnego, powodowane przez zmienność AMOC, poprzez sterowanie zmianami cyrkulacji atmosferycznej w atlantycko-eurazjatyckim sektorze cyrkulacyjnym, sterują zmianami klimatu na obszarze Europy i Polski. Przyczyną nagłej zmiany klimatycznej (climate shift) między rokiem 1987 a 1989 nad Europą, w tym i Polską, było gwałtowne przejście AMOC (i AMO) z fazy negatywnej do fazy pozytywnej. Wnioski te potwierdzają wyniki wcześniejszych badań Suttona i Donga (2012) oraz tych badaczy, którzy w zmianach stanu termicznego Atlantyku i zmianach intensywności cyrkulacji termohalinowej dopatrują się głównej przyczyny multidekadowych zmian klimatu.
EN
The work discusses the relationship between variability of intensity of AMOC (Atlantic Meridional Overturning Circulation) and the air temperature in Poland. The examined period covers the years from 1961 to 2010. AMOC variability is characterized by the author’s own DG3L index (its course - see Fig. 5). Statistically significant (r from 0.45 to 0.55), although not very strong, correlation between DG3L and annual air temperature was noted in Poland (Fig. 1 and 2). Analysis of monthly correlations showed the presence of statistically significant (p <0.05) correlation between DG3L and temperature all over the country or over part of its region in certain months of the year (Fig. 3, Tab. 1). The strongest correlations occur in April, July and August and are observed all over Poland (Fig. 3, IV, VII, VIII). Weak asynchronous correlations were also noted but changes in DG3L occur one year before changes in temperature are observed. Research into the reasons for the occurrence of these correlations showed that the increase in the intensity of AMOC is accompanied by increase in frequency of occurrence of mid-tropospheric circulation of W macro-type, according to the Wangengejm-Girs classification, while the frequency of E macro-type decreases (Tab. 2, Fig. 4). This reflects spatial distribution of heat resources in the North Atlantic. Each of these macro-types, via their synoptic situation (SLP field), modifies the direction of flow of the masses over Poland, changing the share of meridional and zonal components of geostrophic wind in lower levels. The increase in frequency of W macro-type entails increase in the frequency of air flow from W and S (Tab. 3) at the same time reducing the frequency of E macro-type, which is connected with inflow from directions N and E. This eventually leads to changes in air temperature, i.e. its increase. The sharp increase in intensity of AMOC after 1988 is associated with an equally rapid increase in frequency of W macro-type and simultaneous decrease in frequency of E macro-type. This led to an increase in the frequency and intensity of air inflows from SW and W, which results in differing values of temperature increase in all months of the year. Limitation of E macro-type frequency in the cold season (Fig. 6) changed the nature of winters, i.e. eliminating severe winters and protecting mild winters. As a result, after 1988, there was a change in thermal regime of winters, which, in turn, changed the course of the annual temperature (sudden increase by 1°C and a reduction in the range of its variability (see Fig. 1 and 7). The conclusion of the work is that the changes in the thermal state of the North Atlantic, caused by the variability of AMOC, control climate changes in Europe and Poland, by controlling changes in the atmospheric circulation in the Atlantic-Eurasian circulation sector. The reason for abrupt climate shift between 1987 and 1989 over Europe, including Poland, was the violent transition of AMOC (and AMO) from a negative phase to a positive phase. These conclusions are confirmed by the results of earlier research by Sutton and Dong (2012), as well as by these researchers, who claim that the main cause of multi-decade changes in climate is attributed to thermal state of the Atlantic and changes in the intensity of thermohaline circulation.
PL
Przebieg temperatury nad Polską wykazuje bardzo silne związki ze wskaźnikami cyrkulacji atmosferycznej, w tym ze wskaźnikiem NAO. K.Kożuchowski (2011) zwraca uwagę, że wzrostowi temperatury w ostatnim dwudziestoleciu nie odpowiadają zmiany odpowiednich wskaźników cyrkulacji strefowej. Praca stanowi próbę wyjaśnienia rozbieżności między tempem wzrostu temperatury powietrza nad Polską a zmianami wartości wskaźnika NAO, wskazując na działanie dodatkowego czynnika, jakim jest systematyczny wzrost zasobów ciepła w wodach Atlantyku Północnego (oznaczenie Q). Roczna temperatura powietrza nad Polską w zasadniczej części jest regulowana przez zmienność temperatury zimy, wzrost temperatury zimy z kolei zależny od wzrostu wartości wskaźników cyrkulacji strefowej. Wskaźnik NAO w okresie zimowym wskazuje na intensywność napływu mas powietrza „wygrzanego” nad Atlantykiem Północnym. Wobec wzrostu zasobów ciepła (i SST) w Atlantyku Północnym (rys. 1, 2) w ostatnich latach mniej intensywna cyrkulacja strefowa zimą może przynosić nad Polskę powietrze o wyższej temperaturze. Weryfikacja tej hipotezy wykazuje, że uwzględnienie obok zmienności NAO zmienności Q (równanie (2), rys. 3) znacznie zmniejsza rozbieżności między obserwowaną temperaturą roczną nad Polską a temperaturą estymowaną wyłącznie ze wskaźnika NAO (równanie (1), rys. 3). W przypadku najsilniejszych wzrostów i spadków temperatury rocznej nad Polską wymagana jest koincydencja znaków i wartości wskaźnika NAO i Q. Wysokim wartościom zasobów ciepła w wodach Atlantyku Północnego w latach 1930. nieodpowiadał ekwiwalentny wzrost temperatury powietrza nad Polską, gdyż charakter występującej wtedy cyrkulacji atmosferycznej (ujemne w przewadze wartości wskaźnika NAO; rys. 4) nie doprowadzał do napływu powietrza atlantyckiego nad Polskę.
EN
The course of temperature over Poland has a very strong relationship with indicators of atmos¬pheric circulation, including the NAO index. K. Kożuchowski (2011) points out that the temperature rise in the last twenty years does not correspond to changes in relevant indicators of zonal circulation. The work is an attempt to explain the discrepancy between the rate of increase in air temperature over Poland and changes in values of NAO index, pointing to the influence of an additional factor, which is a systematic increase in heat resources in the waters of the North Atlantic (marked Q). Annual air temperature over Poland is mainly controlled by the temperature changes in winter. Winter temperature, in turn, depends on the intensity of zonal circulation. A positive NAO index in winter indicates the intensity of the inflow of air masses “warmed” over the North Atlantic. With rising heat resources (and SST) in the North Atlantic (Fig. 1, 2) in recent years, less intense zonal circulation in winter can bring air of higher temperature over Poland. Verification of this hypothesis shows that adding variability of Q (equation (2), Fig. 3) to variation of NAO significantly reduces the discrepancy between the observed annual temperature over Polish in relation to the temperature estimated only with the NAO index (equation (1), Fig. 3) .The influence of Q on annual temperature over Poland is independent of the zonal circulation, but for the occurrence of the strongest increases and decreases the temperature the coincidence of signs and changes in the NAO index and Q is required. High values of heat resources in the waters of the North Atlantic in the 30-ties of the twentieth century did not match an equivalent increase in air temperature over Poland as the nature of the atmospheric circulation observed at that time (predominantly negative NAO index values, Fig. 4) did not result in the inflow of air from the Atlantic over Poland.
PL
Opad atmosferyczny o dużej wydajności, szczególnie w odniesieniu do zmian klimatu, jest jednym z ważnych czynników wpływających na funkcjonowanie geoekosystemów środowiska obszarów polarnych. Celem niniejszego opracowania była analiza dobowych sum opadu atmosferycznego na dziewięciu wybranych stacjach synoptycznych atlantyckiego sektora Arktyki w wieloleciu 1981-2010. Dla całego analizowanego obszaru stwierdzono istotny udział opadów o dobowych sumach przekraczających 10 mm w rocznych i miesięcznych sumach opadu. Na części analizowanych stacji (Hornsund, Ny Alesund) odnotowano niewielki wzrost częstości występowania opadów o dużych sumach dobowych, jednak na podstawie przeanalizowanych danych nie można jednoznacznie stwierdzić wzrostu w odniesieniu do wszystkich analizowanych stacji, a tym bardziej do całego atlantyckiego wycinka Arktyki. Występowanie opadów o dużym natężeniu wiązało się z konkretnymi typami cyrkulacji atmosferycznej. Dla większości stacji najbardziej opadonośna była cyrkulacja z sektora południowego.
EN
Contemporary climate change mark out intensively in polar regions. Due to some climatologists one of the most important effects of climate change is increase of frequency and intensity of atmospheric precipitation. It has a significant meaning for functioning of polar geoecosystems, especially for glacier ice mass balance, duration and height of snow cover, intensity of hydrological and geomorphological processes as well as the animated environment. The research objective of this study is trial analysis of high efficiency precipitation events in nine chosen synoptic stations in the Atlantic part of the Arctic in period 1981-2010 with particular focus on the first decade of the 21st century as well analyses of these cases in terms of synoptic conditions. Significant contribution of high efficiency precipitation in monthly and yearly precipitation sums have been found in all analysed stations. In some of the analysed stations there was a slight increase of frequency of high efficiency precipitation noticed, however basing on the analysed data it is impossible to explicitly show an increasing trend neither in all analysed stations nor the more in the whole Atlantic Arctic. Correlation between high efficiency precipitation and atmospheric circulation types was very clear. For majority of stations the southern circulation was crucial for high precipitation (humid air masses inflow). In some cases there was clearly visible role of location of the station and influence of orography on the precipitation field. It is important to notice the quality of available databases and considerable difficulties in obtaining reliable, complete and homogenous precipitation data, what makes all analyses of this climatological element in polar areas difficult. The results shown in this study should be regarded as preliminary and basis for further discussion on signalized problems.
5
Content available remote W sprawie genezy Oscylacji Północnoatlantyckiej (NAO)
PL
W pracy zajęto się wyjaśnieniem problemu przyczyn występowania ujemnych korelacji między ciśnieniem atmosferycznym w Niżu Islandzkim a Wyżem Azorskim, czyli procesu, który stanowi istotę NAO, oraz procesów, które prowadzą do zmian faz NAO. Wobec faktu, że Wyż Azorski i Niż Islandzki nie stanowią bytów realnych, lecz jedynie uśrednienie pól ciśnienia chwilowych sytuacji barycznych z okresu miesiąca, sezonu, roku czy wielolecia, zrezygnowano z poszukiwania przyczyn związków między ciśnieniem w obu tych centrach działania atmosfery na poziomie procesów skali klimatycznej. Analiza wykazała, że o wystąpieniu korelacji między ciśnieniem w Wyżu Azorskim a Niżem Islandzkim decydują procesy skali synoptycznej. Konkretnie, jest to zmiana częstości występowania (istotny wzrost - istotny spadek) określonej postaci fali długiej, z którą będzie związane tworzenie się quasi-stacjonarnego antycyklonu na pograniczu strefy umiarkowanej i subtropikalnej po wschodniej stronie N Atlantyku i kierowanie układów niżowych w rejon Islandii. Hipotezę tę zweryfikowano na danych z okresu zimowego (XII-III). Frekwencja makrotypu cyrkulacji środkowotroposferycznej typu W (według typologii Wangenheima-Girsa (Wangenheim, 1952; Girs, 1981) jest wysoce istotnie i silnie powiązana ze wskaźnikiem NAO Hurrella (patrz tab. 1, rys. 2). Ten sam typ fali długiej wykazuje silne powiązania również z typami cyrkulacji dolnej, odpowiadającym NAO-podobnym (NAO-like) wykształceniom pola barycznego (typy A, C2D i D2C według typologii Osuchowskiej-Klein, 1978, 1991; patrz tab. 2, rys. 4). Frekwencja tych typów cyrkulacji dolnej jest silnie powiązana z NAO. Frekwencja najczęściej występującego w okresie zimy typu ułożenia fali długiej (E według typologii Wangenheima-Girsa) jest bardzo silnie ujemnie skorelowana z frekwencją fali długiej typu W (patrz rys. 3). W rezultacie zmian frekwencji fali długiej typu W w danym okresie uśredniania występuje sytuacja, że albo Niż Islandzki i Wyż Azorski zaznaczają się w polu ciśnienia, albo też nie. W tym ostatnim przypadku następuje wzrost ciśnienia w rejonie Islandii i spadek ciśnienia w rejonie przeciętnego występowania Wyżu Azorskiego. W rezultacie zmiany frekwencji fali długiej typu W stanowią przyczynę występowania ujemnych korelacji między ciśnieniem w obu tych klimatycznych centrach aktywności atmosfery. Badanie nad przyczyną zmian faz NAO, czyli realnie - nad przyczynami zmian frekwencji fali długiej typu W według typologii Wangenheima-Girsa w okresie zimowym, wykazało, że główną rolę odgrywają tu wcześniejsze zmiany zasobów ciepła w wodach środkowej części N Atlantyku - w strefie subtropikalnej (rejon 34°N, 040°W) i umiarkowanej (54°N, 030°W oraz 60°N, 010°). Zmiany anomalii SST w okresie sierpień-wrzesień w gridzie 34°N, 040°W (zmienna DXS w tekście) objaśniają 55% wariancji frekwencji fali długiej typu W w okresie nadchodzącej zimy (r = +0,74, n = 35) i tyleż samo zmienności fali długiej typu E (r = -0,75, n = 35; zmienna DXS z lat 1970-2004, frekwencja fal długich W i E z lat 1971-2005). Zmienna DX - różnica między anomaliami z rejonu 34°N, 040°W (DXS) i rejonu 54°N, 030°W (oznaczenie DXN) z okresu sierpień-wrzesień objaśnia 40% zmienności wskaźnika NAO Hurrella w czasie nadchodzącej zimy. Wprowadzenie dodatkowych zmiennych do równań, na przykład z akwenu położonego na NW od Szkocji (rejon 60°N, 010°W) podnosi stopień objaśnienia frekwencji fal długich W oraz E i wskaźnika NAO o ok. 10%. Oznacza to, że charakter cyrkulacji atmosferycznej, która wystąpi w okresie nadchodzącej zimy, stanowi opóźnioną odpowiedź atmosfery na zmiany rozkładu przestrzennego zasobów ciepła w akwenach. Decydującą rolę w tym względzie odgrywają zmiany zasobów ciepła w wodach subtropikalnych środkowej części N Atlantyku (34°N, 040°W), które determinują w okresie zimowym zmiany frekwencji fali długiej typu W według typologii Wangenheima-Girsa (jeśli W, to nie E, jeśli nie W, to E).
EN
This work deals with the analysis of the presence of negative correlations between the atmospheric pressure in the Icelandic Low and the Azorian High, i.e. the process which is the essence of NAO and the processes leading to changes in the phases in NAO. Because of the fact that neither the Azorian High nor the Icelandic Low exist in reality but only are the mean monthly, seasonal, yearly or many-year value of atmospheric conditions observed in a given moment in a given area, the reasons for the correlation between the pressure in both centers of atmospheric activity at the level of climatic processes were given up. The analysis proved that the processes at the synopsis level decide whether the correlation between the pressure in the Azorian High and the Icelandic Low take place. More precisely, it is the change in the frequency of occurrence (significant increase- significant decrease) of a given type of a long wave correlated with the formation of quasi-stationary anticyclone on the border of the polar and subtropical zones on the east part of the N Atlantic and with the directing the depressions towards the region of Iceland. This hypothesis has been verified basing on the data taken from the winter season (DJFM). The frequency of macro-type of mid-tropospheric circulation W type (following Vangenheim-Girs classification (Wangenheim, 1952, Girs, 1981) is highly significantly and strongly correlated with Hurrell NAO index (see table 1, fig. 2). The same type of long wave indicates strong correlations also with low circulation types, NAO-like forms of barometric area (types A, C2D and D2C following Osuchowska-Klein typology, 1978, 1991; see table 2, fig. 4.). The frequency of the low circulation type is strongly correlated with NAO. The frequency of most often type of position of long wave observed during winter (E type following the typology by Vangenheim-Girs) shows very strong negative correlation with the frequency of long wave of W type (see fig. 3). The changes in the frequency of long wave of W type in a given averaging period result in a situation where either the Iceland Low or the Azorian High are or are not observed in the barometric field. In the latter case an increase in the barometric pressure in the region of Iceland can be noted and the decrease in pressure in the area where the Azorian High usually occurs. As a result, the changes in the frequency of long wave of W type can be taken for the reason why there are negative correlations between those two climatic centers of atmospheric activity. The analysis of causes of changes in phases of NAO and more exactly of the reasons for changes in the frequency of long wave of W type following Wangenheim-Girs typology during the winter period indicated that the earlier changes in the heat resources in waters of the central part of the N Atlantic - in the subtropical zone (34oN, 040oW) and in the polar zone (54oN, 030oW and 60oN, 010oW) play significant role in these changes. The changes in anomalies of SST in the period August-September in grid 34oN, 040oW (in the text DXS variable) explain 55% variances of the frequency of long wave W type in the period of coming winter (r = +0.74, n = 35) and the same percentage of the frequency of long wave E type (r = ?0.75, n = 35; DXS variable from the years 1970-2004, the frequency of long waves W and E types from the period 1971-2005). The DX variable - the difference between the anomalies from the area 34oN, 040oW (DXS) and the area 54oN, 030oW (notation DXN) from the period August-September explain 40% of changeability of Hurrel NAO index during the coming winter. The use of additional variables in the equations, e.g. from the area located NW of Scotland (the area 60oN, 010oW) causes that the frequency of long waves W type and E occurrence and Hurrel NAO index can be explained in a more accurate way, i.e. 10% better. This means that the character of atmospheric circulation observed during the coming winter is a delayed reaction of atmosphere to the changes in spatial distribution of heat in the sea areas. The predominant influence can be attributed to the changes in heat resources in the subtropical waters of central part of the N Atlantic (34oN, 040oW) as they determine the changes in the frequency of long wave W type, following the Wangenheim-Girs typology (if W then not E, if not W then E).
PL
Praca omawia wpływ zmian ciśnienia atmosferycznego w Arktyce Atlantyckiej (dalej AA) na kształtowanie zmienności temperatury powietrza na obszarze Europy (na N od 40°N) i NW Azji (do 120°E). Wpływ zmian ciśnienia w AA na temperaturę powietrza zaznacza się we wszystkich, z wyjątkiem czerwca, miesiącach roku, tworząc charakterystyczny cykl z maksimum siły oddziaływania zimą. Zimowe (01-03) zmiany ciśnienia w AA objaśniają od kilkunastu do ponad 60% zmienności temperatury rocznej (z maksimum na obszarze wokół-bałtyckim; 1951-2000). W pracy analizuje się współdziałanie zmian ciśnienia w Arktyce Atlantyckiej ze zmianami ciśnienia w Wyżu Syberyjskim w kształtowaniu zmienności temperatury powietrza na obszarze Europy i NW Azji. Dyskutuje się również kwestie związków zmian ciśnienia w AA z NAO, AO oraz frekwencją makrotypów cyrkulacji środkowotroposferycznej wg klasyfikacji Wangengejma-Girsa. Wyniki analiz wykazują, że o zimowych zmianach ciśnienia w AA decyduje wcześniejszy rozkład zasobów ciepła w wodach Atlantyku Północnego.
EN
The research on relations between climatic elements of Europe and the Arctic has indicated that there are significant correlations between changes in atmospheric pressure in the Atlantic part of the Arctic and air temperature in northern Europe and NW Asia. The strongest correlations are observed between changes in pressure over relatively small area of the Atlantic part of the Arctic (72.5 - 80.0°N, 10.0 - 25.0°E), in addition, the point over which changes in pressure explain most of changes in air temperature is located 75.0°N, 015.0°E. Pressure at this point is further referred as P[75,15] with an index denoting a month (e.g. P[75,15]03 denotes mean pressure in March and P[75,15]01-03 defines mean pressure at this point from the period January till March). Over the Atlantic part of the Arctic within the pressure area there is no marked climatic centre which could be regarded as the centre of atmospheric activity. The research made use of monthly series of SLP values (reanalysis: set NOAA.NCEP-NCAR. CDAS-1.MONTHLY.Intrinsic.MSL.pressure) and the values of monthly air temperature from 211 stations (Fig. 1). The observational period common for both elements covers 50 years, i.e. the period from January 1951 to December 2000. The character of correlations between P[75,15] and air temperature in the following months, from June to May, and their spatial distribution have been presented by isocorrelates maps (Fig. 2). Changes in the strength of correlations between P[75,15] and the temperature over Europe and NW Asia form a clear annual cycle interrupted in June. In June the correlations between P[75,15] and air temperature became very weak and not significant over the most of the area and not continuous in space. During the months after June these correlations got stronger and stronger reaching their maximum during cold season (from November to April). This maximum is located in the region adjacent to the Baltic Sea, where annual and winter (01-03) changes in P[75,15] explain from more than 60% to 50% of annual temperature variances (Fig. 3) The strongest correlation between P[75,15] and air temperature in Siberia is located N of Baikal, where winter (01-03) changes in P[75,15] explain 43-45% of annual temperature variances. At the end of the cold season a visible delay of the decrease in the strength of correlation is observed in the region of Siberia in relation to the European region (in Europe after March, in Siberia after April). Variability in winter and annual values of pressure at 75°N, 015°E also indicates relatively strong correlations with the changeability in temperature of the warmest month in the year in the west and central region of Europe. The annual variability in P[75,15] explains from 40% to 30% changeability of maximum temperature in the region extending from the Atlantic coast of France to central Germany. This belt extends farther east towards the Baltic Sea. The latter correlation has not been explained in this work. The analysis of correlations of changes in pressure at 75°N, 15°E with NAO indicates to the occurrence of statistically significant correlations during months of cold season in the year (October - March, May and June; Tab. 2). Similar analysis of correlations of changes in P[75,15] with AO index (Arctic Oscillation) shows strong and highly statistically significant correlations in all months of the year with maximum falling in January and February. Annual changes in P[75,15], i.e. in pressure at one point explain 73% annual changeability in AO index (r = 0.86) and the winter changeability in (December - March) P[75,15] explains 78% of winter changeability in AO index (r = 0.88) which is the first vector EOF of pressure field (1000 hPa) covering the area from 20°N to the North Pole (90°N), that is the most area of the Northern Hemisphere. This analysis shows that the changes in pressure at the point 75°N, 15°E result in intensification of cyclogenesis over west and central part of the North Atlantic and the consequent long waves (waves of W type following Wangengejm-Girs classification) cause that anticyclones formed over the Atlantic will direct towards Fram Strait through the region of Iceland. The above process has nothing or almost nothing to do with the form of changeability in polar strato-spheric eddy, as assumed by Tomphson and Wallace (1998, 2000, Thompson, Wallace, Hegerl 2000) to be essential for the Arctic Oscillation functioning. Occurrence of correlations between P[75,15] and air temperature over vast areas from 10°W to 130°E suggests that also changes in pressure in the Siberian High are engaged in this process. Theanalysis shows that in a yearly process, changes in pressure in the Atlantic part of the Arctic and in the Siberian High occur in opposite phases (see Tab.1). Barometric gradient between the Atlantic part of the Arctic and the Siberian High becomes extremely strong during the cold season of the year contributing to "pumping" air from eastern Europe to the far end of the Siberia. During the summer season the gradient becomes very weak as the about-turn takes place. The cooperation of changes in pressure in the Atlantic part of the Arctic and pressure in region located farther Baikal -- Mongolia results in very strong oscillation which partly can be identified with Euro-Asian Oscillation (Monahan et al. 2000). During winter season interannual changes in pressure in the Siberian High are relatively small and explain 10.4% variances of barometric gradient between P[75,15] and point 45°N, 110°E (the region of the centre of the Siberian High), whereas the interannual changes in P[75,15] explain 77.5% of variances in this gradient. This means that in the cold season of the year the intensity of air transfer from the west towards Asian land depends on variability in pressure in the Atlantic part of the Arctic. Because in the months of the cold season of the year NAO is the strongest and significantly correlated with changes in P[75,15] therefore, a two-element, with the same phase "conveyor belt" is formed, which during positive phases of NAO transfers the air from over the Atlantic to Europe (NAO) and then towards and into the Siberia (Euro-Asian Oscillation). P[75,15] during cold season months of the year (01-03) indicates statistically significant negative trend (-0.153 hPa/year; p < 0.006) which enables to state that the observed, over the years 1951-2000, increase in air temperature in the Siberia can be, in great extent, attributed to the activity of the above described circulation mechanism. The analysis of reasons for interannual changes in P[75,15] has indicated that there are strong and significant correlations between variability in P[75,15] and the earlier variability in the thermal conditions of the Atlantic Ocean. A very important role in this relation plays thermal condition of three sea areas, i.e. waters of the subtropical region of central part of the North Atlantic (characterized by SST anomalies in grid 34°N, 40°W from August and September), waters of the middle latitudes zone of the central part of the North Atlantic (characterized by SST anomalies from August and September in grid 54°N, 30°W) and waters of the North Atlantic Current from the approach to the Farero-Shetland Passage (characterized by SST anomalies from January and April in grid 60°N, 10°W). Thermal state of these three sea water areas (see formulas [1] and [2]) explains 58% changeability in P[75,15] which will be observed in the following winter (DJFM). The cause of the described correlation is attributed to the fact that the earlier thermal state of the above mentioned sea areas controls the occurrence of long waves, of W and E Wangengejm-Girs type during the following winter. Further, these waves influence the occurrence of low cyclones over the Atlantic part of the Arctic during winter resulting in adequate changes in mean monthly pressure. As a result, it can be stated that the interannual variability in air temperature over vast areas of Europe and over NW Asia is influenced by the processes observed over the North Atlantic and the Atlantic part of the Arctic. The research covers years 1971-2003 (ano-malies in SST taken from 1970-2002) due to the fact that the data have been not only accessible and reliable but also homogeneous with respect to climatological data of SST (CACSST data set (Reynolds and Roberts 1987, Reynolds 1988) and SST OI v.1. (Reynolds et al. 2002).
EN
The study determines frequency of clear (N<25%) and overcast (N>75%) days over Poland and favourable barometric situation over Europe and Northern Atlanitic. Additionally the mean pressure partern on cloudless and on total cloudiness days was analysed. In order to determine the amount of cloudiness over Poland (except the mountains) average daily records of sky coverage from 16 synoptic stations were used as bases for calculating the spatial average cloudiness (N) for each day of the 35-year period (1966-2000). For the sake of description of air pressure, its average daily values were used. The values were taken from the nod-points of the grid form the area q 30°-70°N and A 40°W-60°E. The grid step is 5° latitude and 10° longitude. The number of overcast days is 7 times higher than the number of clear days. In the period 1966-2000 clear days accounted for 5.9% of all days which gives the number of 22 days on average in a year (from 1 day in November to 3 days in August and May). Overcast days accounted for 45.4% of all days - 166 days on average in a year (from 8 days in August to 21 days in December). Clear days generally occurred as single days, overcast days as few days sequences. The cloudamount is essentially connected to the atmospheric pressure over Central Europe. In winter, during increased cyclonic circulation, which is reflected in occurrence of trough of low pressure or low pressure centres in baric field over Central Europe, there are favourable conditions for development of big cloudiness over Poland. Similar pressure pattern favours overcast days also in summer, however this occurs rarely and therefore the cloud amount in summer is less. Build-up of high pressure centre over Poland or over neighbouring area with wedge of high pressure over Poland restricts development of cloudiness. Such situation is more frequent in summer, but definitely higher pressure occurs during "clear" and especially "cloudless" highs in winter. Spatial pattern of the highest and the lowest pressure centres in particular months and seasons, on clear as well as on overcast days, is subject only to slight changes or is stable in comparison with mean pattern. The mentioned spatial pattern is different only in case of barometric maximum on clear days during the cold part of the year, when the number of such days is least. The highest pressure is then connected to the high pressure over Poland and not to the high pressure area over Eastern Europe, as it is in the long-term case. During overcast days maximal pressure is sometimes even higher than during clear days, when the high pressure builds-up over Poland. Such situation happens in summer. Therefore it can be stated that the occurrence of clear or overcast days is mainly determined by the large-scale spatial pattern of pressure, which influences the direction of advection over particular area, thus a type of air-masses.
8
Content available remote Oscylacja Północnego Atlantyku a długość okresu wegetacyjnego w Polsce
EN
In the paper are discussed correlations of the beginning and the length of a vegetative period in Poland with of the NAO index. Analysis had been led for 8 stations completely representing the differentiation of climate in Poland during the 60 years period (1931-1990). There has been stated statistically significant correlations of the beginning and the length of a vegetative period with the NAO index, and no correlations the end of a vegetative period and the NAO index. For each station existing correlations are described dy linear equations . They show that there are move exact correlations of the beginning and the length of a vegetative period with an average value of the NAO index, being a difference of the air pressure between Gibraltar and SW Iceland for the period from January to March, than with Hurrell index (Lisboa-Stykkisholmur, December-March). Change of the NAO index about ą2dn changes the duration of a vegetative period on the area of Poland from 21 days (Zakopane) to 46 days (Szczecin) on the average about 31 days. It proves, that the changeability of the length of a vegetative period, which is one the most important ecological factor, is also considerably caused by conditions of circulation. Generally, the influence of the NAO on the beginning and the duration of the vegetative period is decreasing from NW and W edges of Poland in the direction of SE and E.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.