Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Aspen HYSYS
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
With the expanding need for renewable and sustainable energy resources, the demand for biomass derived bio-oil particularly microalgae or macroalgae based bio-oil is growing. In this regard, understanding the characteristics of bio-oil as a function of several influencing operational parameters is essential. In this study modelling and simulation technique based on Aspen HYSYS was applied to investigate the characteristics of macroalgae Ulva prolifera derived bio-oil from Hydrothermal Liquefaction (HTL) process as a function of the influencing parameters like temperature, kinematic viscosity, and weight percent of the bio-oil assay, cut yield behaviour, and standard liquid density. Modelling and simulation help to optimise the process parameters and design the process layout for large-scale production. According to the simulation results the cut yield of off gases, light naphtha, heavy naphtha, light distillate, heavy distillate, gas oil and residues are shown at specific final boiling point (FBP) temperatures of 70 °C, 70 °C - 110 °C, 110 °C - 221.1 °C, 221.1 °C - 304.4 °C, 304.4 °C - 371.1 °C, 371.1 °C - 537.8 °C and 537.7 °C respectively. Whereas, above a temperature of 300 °C, the weight percentage of aromatic components increased steadily. The increase in percentage composition of the aromatic components is due to the reduction of the paraffinic components. The density of the liquid bio-oil was steadily increasing until a temperature of 200 °C.
EN
A CO2 boiled off gas (CO2 BOG) reliquefaction system using liquid ammonia cold energy is designed to solve the problems of fuel cold energy waste and the large power consumption of the compressor in the process of CO2 BOG reliquefaction on an ammonia-powered CO2 carrier. Aspen HYSYS is used to simulate the calculation, and it is found that the system has lower power consumption than the existing reliquefaction method. The temperature of the heat exchanger heater-1 heat flow outlet node (node C-4) is optimised, and it is found that, with the increase of the node C-4 temperature, the power consumption of the compressor gradually increases, and the liquefaction fraction of CO2 BOG gradually decreases. Under 85% conditions, when the ambient temperature is 0°C and the temperature of node C-4 is -9°C, the liquid fraction of CO2 BOG reaches the maximum, which is 74.46%, and the power of Compressor-1 is the minimum, which is 40.90 kW. According to this, the optimum temperature of node C-4 under various working conditions is determined. The exergy efficiency model is established, in an 85% ship working condition with the ambient temperature of 40°C, and the exergy efficiency of the system is the maximum, reaching 59.58%. Therefore, the CO2 BOG reliquefaction system proposed in this study could realise effective utilisation of liquid ammonia cold energy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.