Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Airy beam
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Based on scintillation index of Airy beam and exponentiated Weibull channel model, analytical expressions of average channel capacity for free-space optical (FSO) communication links with Airy beam as signal carrier under weak atmospheric turbulence and on-off keying modulation scheme are derived. The average capacity at various propagation distances, transverse scale factors and exponential decay factors has been evaluated. And we compared the average capacity of FSO links with Airy beam and Gaussian beam as signal carrier. The results show that the average capacity of FSO links with Airy beam as carrier increases with the increase of mean signal-to-noise ratio and decreases uniformly with the increase of propagation distance. When the transverse scale factor of Airy beam is about 2 cm, a higher average capacity can be obtained. And the smaller the exponential decay factor of Airy beam, the larger the average capacity. Under the same source power or source width, the average capacity of FSO links with Airy beam as carrier is significantly higher than that of FSO links with Gaussian beam as carrier. The results of this research have some reference significance for the application of Airy beam in FSO communication system.
EN
The Airy beams propagation in atmospheric turbulence along a slant path was simulated numerically, based on the split-step Fourier method. Also, the self-repairing and non-diffraction characteristics of Airy beams were investigated and compared with beams propagation on a horizontal path. The effects of parameters including zenith angle, propagation distance, radii of Gaussian aperture and turbulence intensity on the two characteristics of beams were revealed. Additionally, the two characteristics of the Airy beam were compared with those of a Bessel–Gauss beam. The results showed that the two beams obscured by Gaussian apertures can be repaired after propagating some distance along a slant path. However, the non-diffraction characteristic of an Airy beam was stronger than that of a Bessel–Gauss beam and the amplitude attenuation rate of the Bessel–Gauss beam was greater than that of the Airy beam in the process of self-repairing. Results obtained can provide a theoretical basis for an outdoor experiment as well as theoretical guidance for various practical applications including laser communications, laser warning systems, and remote sensing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.