Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  AZ61 magnesium alloy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents tests results of metalforming of magnesium alloy AZ61. Materials for tests were ingots sized ϕ 40×90 mm from magnesium alloy marked with symbol AZ61. Before the shaping process the ingots underwent heat treatment. As a result of conduction of the deformation processes there were rods achieved with diameter of 8 mm. There were axisymmetrical compression tests conducted on the samples taken from rods in temperature range from RT to 350ºC in order to determine the plasticity and formability of the alloy AZ61. Static tensile test was conducted in room temperature (RT), in 300ºC and in 350ºC. With the use of light and electron microscopy techniques the changes which occurred in the microstructure of AZ61 alloy in initial condition and after plastic deformation (classic extrusion, KoBo method extrusion) were described. The deformation of alloy AZ61 using the KoBo method contributes to an increase in strength and plastic properties. The effect of superplastic flow was found at a temperature of 350ºC, where a 300% increase in plastic properties – elongation value was obtained. The analysis of the microstructure showed a significant grain size reduction in the microstructure of alloy AZ61 after deformation by the KoBo method and after anaxisymmetric compression test, where grains of an average diameter of d = 13 μm were obtained.
EN
The resultes of anodic oxide conversion coatings on wrought AZ61 magnesium alloy production are describe. The studies were conducted in a solution containing: KOH (80 g/l) and KF (300 g/l) using anodic current densities of 3, 5 and 10 A/dm2 and different process durations. The obtained coatings were examined under a microscope and corrosion tests were performed by electrochemical method. Based on these results, it was found that the low-voltage process produces coatings conferring improved corrosion resistance to the tested magnesium alloy.
PL
W artykule zaprezentowano wyniki badań dotyczących wpływu parametrów odkształcenia na zmianę naprężenia uplastyczniającego oraz mikrostrukturę stopu magnezu AZ61 (oznaczenie wg norm ASTM). Próby jednoosiowego ściskania na gorąco przeprowadzono w zakresie temperatury od 250 do 400 [stopni] C i prędkości odkształcenia od 0,01 do 1 s-1. Analiza wyników badań plastometrycznych oraz obserwacja mikrostruktury w pozwoliły ustalić, który mechanizm odkształcenia plastycznego - poślizg czy bliźniakowanie - dominuje w określonych warunkach kształtowania stopu AZ61. Otrzymane wyniki porównano z rezultatami prowadzonymi wcześniej dla stopu typu AZ31 o mniejszej zawartości aluminium.
EN
The current trends in the automotive and aircraft focus first and foremost on a reduction of the vehicle weight and saving energy, thereby protecting the environment. Such a set of technical, economical and ecological aspects arouses a considerable interest of the industry in light alloys. Owing to a number of their advantageous mechanical properties including, first of all, low density (1.74 g/cm3), magnesium alloys are more and more frequently used as an engineering material. There is a regular increase visible in the number of components made of magnesium alloys in the car structure. However, for the production of components from magnesium alloys, casting processes are still most often applied. Alloys used for plastic working are less popular compared to those processed via casting and therefore, the number of their grades is much smaller. The number of alloying components in cast magnesium alloys is always higher than in alloys subject to plastic working. Alloys from the group Mg?Al?Zn?Mn have the best set of properties, for they contain as much as 8 % Al with an addition of Mn (up to 2 %) and Zn (up to 1.5 %). From among elements subjected to plastic working, sheet metal deserves special attention, for it can be applied for the construction of light vehicles. In connection with the complexity of the phenomena which take place in the microstructure, a number of studies in the field of Mg-Al-Zn alloys subjected to plastic working are focused on detecting the mechanisms of deformation and structure reconstruction during deformation. There are two main mechanisms of deformation of magnesium alloy - slip and twinning. Magnesium alloys crystallize with hexagonal close pack (HCP) structure and they have very limited number of slip systems. The paper presents the research results on the effect of deformation parameters on flow stress and microstructure of AZ61 magnesium alloy. Hot compression tests were conducted at the temperature range of 250 to 400 [degrees] C and at the strain rate range of 0.01 to 10 s-1. Analysis of the plastometric tests results as well as examination of microstructure at different deformation phases allowed to determine what kind of deformation mechanism - slip or twinning - dominates in the specific conditions of AZ61 alloy forming. The results were compared to the ones obtained for AZ31 magnesium alloy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.