Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 37

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ARPA
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
In this article, the author will try to explain the basic principles of the practical focus of using radar in maritime navigation, analysing its potential errors and limitations. An attempt will also be made to describe the basic seamanship practice of how to set up the radar, determine the radar blind sectors, calculate the radar position accuracy, generate a basic anti-collision radar report, calculate CPA, TCA, BCR, BCT etc., and verify the effectiveness of a trial anti-collision manoeuvre by using the radar in the different radar modes when navigating in restricted sea areas.
EN
The paper presents results of ship's safe trajectory planning algorithms verification. Real navigational data registered from a radar with an Automatic Radar Plotting Aid on board the research and training ship Horyzont II were used as input data to the algorithms. The algorithms verified in the presented research include the Ant Colony Optimization algorithm (ACO), the Trajectory Base Algorithm (TBA), the Visibility Graph-search Algorithm (VGA) ant the Discrete Artificial Potential Field algorithm (DAPF). Details concerning data registration and exemplary results obtained with the use or real navigational data are introduced and summarized in the paper. Presented results prove the applicability of proposed algorithms for solving the ship's safe trajectory planning problem.
EN
This research article formulates a mathematical model of the matrix game of the safe ship control process containing: state variables and control, collision risk definition and the form of a collision risk matrix. Multicriteria optimization of the matrix game was introduced, leading to non-cooperative and cooperative game control algorithms and non-game control. Simulation safe trajectories of own ship for various types of control were compared to the example of the real situation at sea.
EN
Distributed Stochastic Search Algorithm (DSSA) is one of state-of-the-art distributed algorithms for the ship collision avoidance problem. In DSSA, whenever a ship encounters with any number of other ships (neighboring ships), she will select her course with a minimum cost after coordinating their decisions with her neighboring ships. The original DSSA assumes that ships can change only their courses while keeping their speed considering kinematic properties of ships in general. However, considering future possibilities to address more complex situations that may cause ship collision or to deal with collision of other vehicles (such as mobile robots or drones), the options of speed changes are necessary for DSSA to make itself more flexible and extensive. In this paper, we present DSSA+, as a generalization of DSSA, in which speed change are naturally incorporated as decision variables in the original DSSA. Experimental evaluations are provided to show how powerful this generalization is.
5
Content available Radar data fusion in the STRADAR system
EN
The main task of the Polish Border Guard is protection of the country’s border which requires utilization of multimedia surveillance systems automatically gathering, processing and sharing various data. The paper presents such a system developed for the Maritime Division of the Polish Border Guard within the STRADAR project and the problem of fusion of radar data in this system. The system, apart from providing communication means, gathers data from AIS, GPS and radar receivers: ARPA and SCANTER 2001. In the paper the concept of the radar data gathering in STRADAR system is provided with detailed presentation of radar servers, Radar INT modules and a reduplication (fusion) module and the proposition of the algorithm for radar data fusio.
PL
Głównym zadaniem polskiej Straży Granicznej jest ochrona granicy kraju, która wymaga wykorzystania multimedialnych systemów nadzoru umożliwiającychautomatyczne gromadzenie,przetwarzanie i udostępnianie różnego rodzaju danych. W artykule przedstawiono taki system opracowany dla Morskiego Oddziału Straży Granicznej w ramach projektu STRADAR oraz problem fuzji danych radarowych w tym systemie. System STRADAR, oprócz zapewnienia komunikacji pomiędzy elementami systemu, gromadzi i udostępniania dane z AIS, GPS i odbiorników radarowych: ARPA i SCANTER 2001. W artykule zaprezentowano koncepcjęgromadzenia danych adarowych w systemie STRADAR, przedstawiono serwery radarowe, moduł radar INT i moduł reduplikacjioraz zaproponowano algorytm fuzji danych radarowych.
EN
The software solutions presented in this paper generate real-time data compatible with ARPA radar standard as well as Terma SCANTER 2001 radar cooperating with Video Distribution and Tracking (VDT) server. Two different approaches to this problem are considered: emulation based on the data captured from real devices and simulation of objects on the sea. For both of them architecture, implementation details and functional test results are presented. The developed software will be used to test new functionalities of the multimedia surveillance system implemented for the Maritime Division of the Polish Border Guard within the STRADAR project.
PL
W artykule opisano oprogramowanie umożliwiające generowanie w czasie rzeczywistym danych pochodzących z radaru ARPA oraz radaru Terma SCANTER 2001 współpracującego z serwerem Video Distribution and Tracking (VDT). Rozważane są dwa różne podejścia do rozwiązania tego problemu: emulacja bazująca na danych z rzeczywistych urządzeń oraz symulacja obiektów na morzu. Dla obu podejść zamieszczono opisy struktury oprogramowania, szczegółów jego implementacji oraz wykonanych testów funkcjonalnych. Opracowane oprogramowanie zostanie wykorzystane do testowania nowych funkcjonalności multimedialnego systemu nadzoru rozwijanego dla Morskiego Oddziału Straży Granicznej w ramach projektu STRADAR.
EN
At present, providing a clear presentation of the navigational situation around a navigator’s own ship (OS) is one of the most important issues facing device manufacturers. Integration of navigational devices on the bridge has made it possible to transfer information and present it in the form chosen by the navigator screen. However, this may cause a decrease in the clarity of information and hamper its interpretation. The ability to select the best information, and that which is most needed at a given moment, depends on navigator proficiency. Vectors are still the basic form of the graphic presentation of radar-tracked object data. However, the ability to track more objects at the same time in crowded areas results in a decrease in readability and can cause errors. This article introduces the possibility of presenting information about collision danger in the form of Dangerous Courses Sectors (DCS) together with an analysis of changes in these during typical ship encounter situations. DCS are calculated on the base of Dangerous Passing Areas (DPA) as bearings on the marginal points of these areas.
EN
This article presents the movement vector research conducted in the radar laboratory of Gdynia Maritime University and during vessel cruises. The precision of designating the vessels' location, course, speed and CPA were researched using on-baord radars and AIS data. It is concluded that the precision of designating the researched parameters is greater than the International Maritime Organization requires.
EN
According to the IMO recommendation when the target data from radar tracking and AIS are both available and the association criteria are fulfilled such that the radar and AIS information are considered as for one physical target, then as a default condition in radar equipment should be automatically selected and displayed the AIS target symbol and the alphanumerical AIS target data only. The article presents research conducted in real sea conditions on the reliability of information presented by the ship's AIS and ARPA about the passing distance with the other vessel tracked by radar equipment and fitted with AIS.
EN
The article presents analysis of the automatic radar plotting aid (ARPA) and automatic identification system (AIS) indications reliability performed on the base of the results of measurements conducted on merchant vessels at sea. In the first part of the article titled “Comparative study of the accuracy of AIS and ARPA indications. Part 1. Accuracy of the CPA indications” are described: vessels on which the tests were carried out, AIS and radar equipment installed on them, observed meeting situations and accuracy of the CPA indication. In this article are discussed, for the same meeting situations, accuracy of the information on true course and true speed of the opposite vessel presented by ARPA and AIS and correlation between this accuracies and errors of the CPA indication.
EN
Guarantee of the ship safety is the primary task posed for modern navigation systems. This concerns monitoring the proper ship position as well as providing accurate information about the collision threat. The proper interpretation of this information belongs to the navigator. He must take into account many variables affecting the assessment of the situation and then make the right decision regarding anti-collision manoeuvres. This assessment could be made easier for him with use some form of graphic target data presentation methods other than currently required and described in IMO performance standards. Other possible graphic presentation methods of collision information are described in the article along with the concept of their usage.
PL
Podstawowym zadaniem stawianym przed nowoczesnymi systemami nawigacyjnymi jest zapewnienie bezpieczeństwa statku. Dotyczy to zarówno konieczności właściwej kontroli pozycji statku jak i dostarczenia rzetelnej informacji o zagrożeniu kolizyjnym. Właściwa interpretacja tej informacji należy do nawigatora. Musi on uwzględnić wiele zmiennych czynników mających wpływ na ocenę sytuacji, a następnie podjąć właściwą decyzję odnośnie podejmowanych manewrów antykolizyjnych. Możliwość zastosowania innej formy graficznej prezentacji informacji niż wymagana obecnie przez przepisy może ułatwić mu taka ocenę. W artykule przedstawione zostały inne sposoby graficznej prezentacji informacji kolizyjnej wraz z koncepcją ich wykorzystania.
EN
The paper presents a new approach for solving a path planning problem for ships in the environment with static and dynamic obstacles. The algorithm utilizes a heuristic method, classified to the group of Swarm Intelligence approaches, called the Ant Colony Optimization. The method is inspired by a collective behaviour of ant colonies. A group of agents - artificial ants searches through the solution space in order to find a safe, optimal trajectory for a ship. The problem is considered as a multi-criteria optimization task. The criteria taken into account during problem solving are: path safety, path length, the International Regulations for Preventing Collisions at Sea (COLREGs) compliance and path smoothness. The paper includes the description of the new multi-criteria ACO-based algorithm along with the presentation and discussion of simulation tests results.
13
EN
It is necessary to develop a useful application to use big data like as AIS for safety and efficiency of ship operation. AIS is very useful system to collect targets information, but this information is not effective use yet. The evaluation method of collision risk is one of the cause disturb. Usually the collision risk of ship is evaluated by the value of the Closest Point of Approach (CPA) which is related to a relative motion. So, it becomes difficult to find out a safety pass in a congested water. Here, Line of Predicted Collision (LOPC) and Obstacle Zone by Target (OZT) for evaluation of collision risk are introduced, these values are related to a true motion and it became visible of dangerous place, so it will make easy to find out a safety pass in a congested water.
EN
The tracking filter plays a key role in accurate estimation and prediction of maneuvering vessel’s position and velocity. Different methods are used for tracking. However, the most commonly used method is the Kalman filter and its modifications. The Alpha-Beta-Gamma filter is one of the special cases of the general solution pro-vided by the Kalman filter. It is a third order filter that computes the smoothed estimates of position, velocity and acceleration for the nth observation, and also predicts the next position and velocity. Although found to track a maneuvering target with a good accuracy than the constant velocity, Alpha-Beta filter, the Alpha-Beta-Gamma filter does not perform impressively under high maneuvers such as when the target is undergoing changing accelerations. This study, therefore, aims to track a highly maneuvering target experiencing jerky motions due to changing accelerations. The Alpha-Beta-Gamma filter is extended to include the fourth state that is, constant jerk to correct the sudden change of acceleration in order to improve the filter’s performance. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model, Alpha-Beta-Gamma-Eta, algorithm as compared to the constant acceleration model, Alpha-Beta-Gamma in terms of error reduction and stability of the filter during target maneuver.
PL
W artykule przedstawiono badania wektora ruchu prowadzone w laboratorium radarowym Akademii Morskiej w Gdyni, oraz podczas rejsów na statkach. Badano dokładność wyznaczenia położenia statku, kursu, prędkości i odległości najmniejszego zbliżenia wykorzystując radary statkowe oraz dane z Systemu Automatycznej Identyfikacji. Stwierdzono, że dokładność wyznaczania badanych parametrów jest większa niż narzucają wymagania Międzynarodowej Organizacji Morskiej.
EN
This article presents the movement vector research conducted in the radar laboratory of Gdynia Maritime University and during vessel cruises. The precision of designating the vessels' location, course, speed and CPA were researched using on-baord radars and AIS data. It is concluded that the precision of designating the researched parameters is greater than the International Maritime Organization requires.
PL
W artykule przedstawiono wyniki badań dokładnościowych wskazań przez ARPA i AIS wartości odległości największego zbliżenia (CPA) statku przeciwnego do statku własnego, zrealizowanych na symulatorze radarowo-nawigacyjnym NAVSIM 90. Pomiary przeprowadzono w celu sprawdzenia, czy na urządzeniu symulacyjnym przeznaczonym do szkolenia i egzaminowania pilotów i oficerów statków handlowych można odtworzyć błędy wskazań statkowego AIS wykryte w czasie badań w warunkach rzeczywistych opisanych w pozycji bibliograficznej przywołanej w artykule.
EN
The article presents results of the accuracy tests of indicated by AIS and ARPA closest point of approach (CPA) of the opposite vessel to the own ship, conducted on the radar-navigational simulator NAVSIM 90. The measurements were carried out to verify that the simulator designed for training and examination pilots and officers of merchant ships can reproduce errors of shipboard AIS detected during the researches carried out under real conditions described in the references cited in the article.
EN
One consideration required in the resolution concerning radar and automatic radar plotting aid (ARPA) equipment is the possibility of an automatic drift calculation being realized in the base of fixed target tracking. This information is very important to providing safe navigation, especially in restricted areas. This paper presents an analysis of the present regulations contained in IMO resolutions and the results of an experiment conducted in the ARPA simulator. The aim of the simulations was to verify the reliability of the information presented on the ARPA display and to determine the accuracy of the automatic drift calculation implemented in the simulator.
EN
A number of factors affect the safety of navigation, the collision of two ships being one of them. In ship encounter situations, certain principles of behaviour set forth by regulations are in force. Traditionally, a navigational situation is evaluated by identifying the closest point of approach for the passing ships and by comparing it with the assumed safe distance. Then it is necessary to use technical aids: radar and Arpa (depending on the regulations). In Arpa, navigational situation information is mainly presented in the form of vectors. The other presentation that can be used in an encounter situation is the predicted point of collision (PPC). This is the point or points toward which one’s own ship should steer at her present speed (assuming that the target does not manoeuvre) in order for a collision to occur. This paper presents original results of a study into the assessment of ship encounter situations based on PPC. The methods (analytical and graphical) of PPC as a set of circles are elaborated and an analysis of a ship encounter situation performed.
19
Content available Real-time generator of AIS/ARPA/GPS data
EN
The paper presents a real-time generator of AIS/ARPA/GPS position data in the standardized NMEA 0183 text format. Position data are produced by a set of various types of ships simulated on the Polish part of the Baltic Sea and are generated on defined IP/UDP addresses and RS-232 ports. In the simulation an extensive set of input parameters is taken into account including the number of particular types of ships, their dimensions, speed as well as parameters of AIS equipments, ARPA radars and GPS receivers. The paper describes the architecture and implementation of the generator. Additionally, it demonstrates the application of the developed generator to test the software developed for the Polish Border Guard.
PL
W artykule zaprezentowano generator danych pozycyjnych AIS/ARPA/GPS w czasie rzeczywistym w zestandaryzowanym formacie tekstowym NMEA 0183. Dane pozycyjne są generowane przez zbiór różnorodnych rodzajów statków symulowanych w obrębie polskiej części Morza Bałtyckiego na zadane adresy IP/UDP i porty RS-232. Podczas symulacji uwzględniany jest szeroki zbiór parametrów wejściowych, w tym liczba poszczególnych rodzajów statków, ich rozmiary, prędkość, a także parametry nadajników i odbiorników AIS, radarów ARPA, odbiorników GPS. W artykule opisano architekturę i realizację generatora. Dodatkowo przedstawiono jego zastosowanie do testowania oprogramowania zrealizowanego dla Straży Granicznej.
EN
According to the IMO recommendation when the target data from AIS and radar tracking are both available and the association criteria are fulfilled such that the AIS and radar information are considered as for one physical target, then as a default condition in radar equipment, the AIS target symbol and the alphanumerical AIS target data should be automatically selected and displayed only. The article presents research conducted in real conditions on the reliability of information presented by the ship's AIS about the passing distance with the other vessel equipped with AIS and time to pass it by comparing data from the AIS with that presented by ARPA.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.