Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  APDL
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The phase transformation model incorporated via the user subroutines to the commercial finite element software to accurately predict changes occurring during cooling of metallic components is presented in the paper. The cooling process of steel rings used in airplanes was selected as a case study. Particular attention was put on heterogeneities occurring in temperature field, which influence phase transformations and eventually residual stresses. Developed model was used in the present work to evaluate influence of different cooling conditions on ring behaviour.
EN
In this work, fracture mechanics methodology is used to predict crack propagation in the adhesive joining of aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore 2 × 3 = 6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases.
3
Content available remote Evolutionary stress minimisation on a turbine blade shank
EN
The paper describes shape optimisation of a turbine blade shank. The turbine blade shank zone with a compound fillet is a critical location where a high risk of failure exists. The APDL language operating in Ansys environment is used to write a parametric turbine blade shank FEM models generator, which is a basic part of evolutionary optimisation routine. The goal of the optimisation is the 1st principal stress reduction with maximum allowable mass constraint imposed. Parameterisation routine and optimisation results are presented and discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.