Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 35

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ANSYS Fluent
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The article presents the results of the CFD (Computational Fluid Dynamics) research on a vertical axis wind turbine with a variable swept area. The tested turbine has four sets of blades, each of which consists of two moving parts. By changing the angle between these parts, it is possible to change the swept area of the turbine wheel to adjust the characteristics of the turbine to the current wind speed. In the case of strong wind, it is possible to fold blades to protect the rotor against damage. The 3D-CFD model was tested using the ANSYS Fluent software. The four rotors differing in the blade angle were analyzed. The tests were carried out for different wind speeds. The results are presented as pressure and velocity distributions as well as streamlines around the rotor. In addition, the waveforms of the torque acting on a single blade and on the entire rotor are shown. The average rotor torque was also calculated. These findings enabled us to create the characteristics of the power factor for different rotational speeds of the rotor. The results show that the adjustment of the swept area makes the z-turbine have a flexible operating range.
EN
The process of underground mining is one of the most complex and hazardous activities. In order to maintain the continuity and efficiency of this process, it is necessary to take measures to reduce this hazard. The paper addresses this issue by presenting a developed methodology for using model studies and numerical simulations to support the process of monitoring methane hazards. Its basis is the developed model of the region of underground mining exploitation along with the ventilation phenomena occurring in it. To develop it, the ANSYS Fluent program was used, based on the finite volume method classified as computational fluid mechanics. The model reflects both the geometries and physical and chemical phenomena occurring in the studied area, as well as the auxiliary ventilation equipment used during operation. The research was conducted for two variants of methane emissions from goaf zones, the first of which concerned the actual state of the mining area, and the second of which concerned increased methane emissions from these goaf zones. The purpose of the study was to determine the distribution of methane concentrations in the most dangerous part of the studied area, which is the intersection of the longwall and the tailgate, as well as the distribution of ventilation air flow velocities affecting them. The studies for both variants made it possible to determine places particularly exposed to the occurrence of dangerous concentrations of methane in this region. The methodology developed represent a new approach to studying the impact of methane emissions from goaf zones into mine workings.
EN
The analyses aim to determine aerodynamic force coefficients in the case of airflow around two smooth or rough cylinders positioned at different angles to the direction of wind velocity. Such systems, for instance, may be part of a tubular water slide. The results were compared with the values of the interference coefficient of the cylinders arranged in a row included in Eurocode EN 1991 part 4. The aerodynamic forces of the cylinder systems were determined on the basis of experimental tests conducted in a wind tunnel. To verify the above results, CFD (computational fluid dynamics) simulations were prepared. An important observation is that for the angle of yaw β = 0◦, the negative component of the lift force (lateral) fy is shown, while for the other cases, the situation is opposite and the lateral force points outside the gap (upward). The second is that the results of aerodynamic drag for rough cylinders arranged in a row and calculated according to EN 1991 part 4 may be underestimated. The flow around the pair of smooth cylinders is quite different from that of the rough ones, because during the experiment the first falls into the critical flow regime, while the second has supercritical characteristics.
EN
In this paper, a study of the effect of winglet sweep angle and winglet tip chord of the aircraft wing on the aerodynamics performances and how to improve it are carried out, assuming Cant angle 60°, winglet height = 3.5 m, Toe angle = -5°, and Twist angle = +5°. Different sweep angles tested (-25°, -15°, 0°, +15°, +25°, +35°, and +45°) and winglet tip chord (0.25, 0.375, and 0.5 m). Four Angle of attack is presented (0°, 3°, 6°, and 9°). The aerodynamics properties of the wing were measured in terms of calculated lift to drag ratio to decide which wing has a high value of lift and lower drag. All models of a wing (eighty-four models) are drawn for 3D using the SOLIDWORKS program. Boeing 737-800 wing dimensions were used. All models of a wing were analyzed using ANSYS FLUENT. The results showed that sweep angle and winglet tip chord of the winglet by changing their configuration can improve aerodynamic performance for various attack angles. The maximum value of the lift to drag ratio was obtained with a sweep angle -15°, winglet tip chord 0.375m, and angle of attack 3°.
EN
The paper presents the adiabatic installation of compressed gases energy storage. The authors present the results of analyzes for this type of installation due to the selection of thermal storage material. The simulations were carried out for basalt, granite and ceramics (alumina) as well as for porosity value from 0.375 to 0.39 of basalt-filled reservoirs in Thermal Energy Storage (TES) installation. Characteristics of outlet air temperature, air pressure drop amount of energy stored and external heat losses as a time functions during the charging phase are presented. The research indicated that due to the lowest density and average heat capacity of the materials studied, granite has the fastest and most intense physical exit loss from the storage tank which was approximately 1100 W. However, there was no significant effect on air pressure drop depending on the chosen accumulation materials. The effect of rock bed porosity on the pressure drop of flowing air was investigated. For a constant mass flow rate, pressure drop values ranging from 2200 Pa to 6200 Pa were obtained depending on the porosity value.
EN
This paper presents a numerical simulation for predicting the combustor exit temperature pattern of an aircraft engine, developed using the commercial fluid simulation software Ansys Fluent, which assumes a shape probability density function for the instantaneous chemistry in the conserved scalar combustion model and the standard k-ε model for turbulence. We found the compliance of the radial and circumferential non-uniformities of the exit temperature with the experimental data to be insufficient. To achieve much more accurate result, the mixing intensity was enhanced with respect to the initial calculation due to using the reduced value of the turbulent Schmidt number Sc. Numerical simulation was performed for values of the turbulent Schmidt number from Sc = 0.85 (default) up to Sc = 0.2, with results confirming the reduction of radial and circumferential non-uniformities of exit temperature. However, correlation between radial and circumferential non-uniformities is not admissible for these cases. Therefore, we propose to use a temperature-dependent formulation of the turbulent Schmidt number Sc, accounting for the increase in Sc number with increasing gas temperature. A user defined function (UDF) was used to implement the Sc number temperature dependence in Ansys Fluent. The numerical results for the proposed Schmidt number Sc temperature dependence were found to be in acceptable agreement with the experimental data both for radial and circumferential non-uniformities of the exit temperature pattern.
PL
W niniejszym artykule przedstawiono symulację numeryczną do przewidywania rozkładu temperatury przy wylocie z komory spalania silnika lotniczego, opracowaną przy użyciu komercyjnego oprogramowania Ansys Fluent. Przyjęto funkcję gęstości prawdopodobieństwa kształtu dla natychmiastowych reakcji chemicznych w zachowanym skalarnym modelu spalania oraz standardowy model k-ε dla turbulencji. Stwierdzono niewystarczającą zgodność niejednorodności promieniowych i obwodowych temperatury wylotowej z danymi eksperymentalnymi. W celu uzyskania bardziej dokładnego wyniku, intensywność mieszania została wzmocniona w stosunku do początkowych obliczeń w związku z zastosowaniem zredukowanej wartości turbulentnej liczby Schmidta Sc. Symulacje numeryczne zostały przeprowadzone dla wartości turbulentnej liczby Schmidta od Sc = 0,85 (domyślnej) do Sc=0,2, z wynikami potwierdzającymi redukcję niejednorodności promieniowej i obwodowej temperatury wylotowej. Jednakże korelacja pomiędzy niejednorodnością promieniową i obwodową nie jest dopuszczalna dla tych przypadków. Zaproponowano więc, żeby liczb turbulencji Schmidta Sc była ujęta w sposób uzależniony od temperatury, z rosnącym liczby Sc wraz ze wzrostem temperatury gazu. Posłużono się funkcją zdefiniowaną przez użytkownika (UDF) w oprogramowaniu Ansys Fluent w celu implementacji zależności liczby Sc od temperatury. Wyniki numeryczne otrzymane dla zaproponowanej zależności liczby Schmidta od temperatury były w akceptowalnej zgodzie z danymi eksperymentalnymi zarówno dla niejednorodności promieniowej, jak i obwodowej temperatury wylotowej.
7
Content available Fluid flow in the impulse valve of a hydraulic ram
EN
The paper presents the results of a study investigating the equilibrium of forces acting on the closing element of the impulse valve in a water ram at the end of the acceleration stage. Acceleration is one of the three main stages in the working cycle of a water ram. In the first part of the paper, we estimated water velocity based on our earlier experimental measurements. We also calculated the minimum force required for closing the impulse valve. The second part of the paper discusses two variants of a numerical model, which was developed in ANSYS Fluent to determine the resultant hydrodynamic pressure and, consequently, the forces acting on the head of the impulse valve at the end of the acceleration stage. The main aim of this research was to verify the applicability of numerical modeling in water ram studies. The present study was motivated by the fact that Computational Fluid Dynamics is very rarely applied to water rams. In particular, we have not found any numerical studies related to the equilibrium of forces acting on the closing element of the impulse valve in a water ram.
EN
Stepped spillway is hydraulic structure designed to dissipate the excess in kinetic energy at the downstream of dams and can reduce the size of stilling basin at the toe of the spillway or chute. The flow on a stepped spillway is characterised by the large aeration that can prevent or reduce the cavitation damage. The air entrainment starts where the boundary layer attains the free surface of flow; this point is called “point of inception”. Within this work the inception point is determined by using software Ansys Fluent where the volume of fluid (VOF) model is used as a tool to track the free surface thereby the turbulence closure is derived in the k – ε turbulence standard model. This research aims to find new formulas for describe the variation of water depth at step edge and the positions of the inception point, at the same time the contour map of velocity, turbulent kinetic energy and strain rate are presented. The found numerical results agree well with experimental results like the values of computed and measured water depth at the inception point and the numerical and experimental inception point locations. Also, the dimensionless water depth profile obtained by numerical method agrees well with that of measurement. This study confirmed that the Ansys Fluent is a robust software for simulating air entrainment and exploring more characteristics of flow over stepped spillways.
PL
Przelew schodkowy jest budowlą hydrauliczną projektowaną w celu rozpraszania nadmiaru energii kinetycznej i przez to ograniczenia koniecznej głębokości w stanowisku dolnym. Przepływ przez przelew schodkowy charakteryzuje się dużym napowietrzeniem strumienia, co może zapobiec lub zmniejszyć uszkodzenia kawitacyjne powierzchni zlewowej przelewu. Porywanie powietrza rozpoczyna się tam, gdzie turbulentna przydenna warstwa graniczna osiąga swobodną powierzchnię przepływu; ten punkt nazywano „punktem początkowym”. Położenie punktu początkowego w pracy określano na podstawie wyników obliczeń programem Ansys Fluent, wykorzystującym metodę objętości skończonych płynu (VOF) wraz ze standardowym zamknięciem modelu turbulencji k – ε stosowanym w obliczaniu przepływu o swobodnej powierzchni. Celem prowadzonych badań było znalezienie nowych zależności do opisania zmian głębokości wody na stopniu schodka i położenia punktu początkowego. Przedstawiono obliczone rozkłady prędkości, turbulentnej energii kinetycznej i naprężeń. Uzyskane wyniki obliczeń są zgodne z wynikami badań eksperymentalnych.
PL
Przedstawiono wyniki obliczeń CFD dotyczących przepływu przez zwężkę pomiarową z odbiorem przy tarczowym. Obliczenia wykonano za pomocą programu Ansys Fluent 16.0 przy użyciu modelu Species transport oraz modelu turbulencji k-ω SST. Podano wartości spadków ciśnień obliczone dla pięciu wydatków objętościowych mieszaniny gazów. Porównano je z wynikami uzyskanymi za pomocą oprogramowania TNflow 3.10, które jest specjalistycznym narzędziem do projektowania zwężek pomiarowych. Błąd względny porównywanych wyników mieścił się w zakresie 10,6÷3,7%.
EN
The paper focuses on CFD simulations included results of llow through the orifice with the close-to-plate tapping. The presented calculations were made with the use of commercial CFD code Ansys Fluent 16.0. Additionally, Species transport model and k-ω SST turbulence model applied in simulations. The pressure drop for five values of gas mixture volumetric flow rate is given. Numerical results were compared with TNflow 3.10 software being a tool dedicated to the orifice design. The relative error of compared results was in a rangę 10.6÷13.7%.
EN
Gas emissions from underground sites to the atmosphere depend on many factors. Pressure drops are considered to be the most important. However, emissions can also be observed during the initial phase of the pressure rise, following a previous drop in pressure. On the other hand, gas emissions may not be detected when the pressure drops, especially when a previous pressure rise has taken place. The aim of the research was to determine the role of variations in baric tendency on airflow rate and its direction. To solve this problem a numerical model was built utilizing the Ansys Fluent software package. Subsequently, three scenarios of baric tendency variations were tested: a) rise – drop, b) drop – drop, c) drop – rise. The results showed inert behavior of gases. Under scenario (c), 1 hour after the change in tendency gases still were flowing out to the atmosphere. Considering scenario (a), it was proved that even during a pressure drop gas emissions do not take place, which can be crucial for further determination of the gas hazard at the surface or for assessment of the rate of gas emissions from a particular gas emitter. Scenario (b) merely gave an overview of the process and was mainly used for validation purposes. It gave a maximal CO2 concentration of 2.18%vol (comparable to measurements) and a CO2 mass flow rate 0.15kg/s. Taking into account greenhouse gas emissions this amounted to 514 kg CO2/h.
PL
Emisja gazów z górotworu do atmosfery zależy od wielu czynników, z których jako najważniejszy uznawane są spadki ciśnienia atmosferycznego. Jednakże podczas prowadzonych badań wypływ gazów został także odnotowany podczas początkowego okresu zwyżki barycznej, poprzedzonego zniżką. Wystąpiło także zjawisko braku wypływu gazów mimo występującej zniżki barycznej, w szczególności po okresie wzrostu ciśnienia. Dlatego celem przeprowadzonych badań było określenie wpływu zmian ciśnienia atmosferycznego (rodzaju tendencji barycznej) na natężenie przepływu gazów pomiędzy górotworem a atmosferą oraz wyznaczenie jego kierunku. Do badań stworzono model numeryczny zjawiska w programie Ansys Fluent. Założono trzy warianty zmian ciśnienia: a) zwyżka – zniżka, b) zniżka – zniżka, c) zniżka – zwyżka. Otrzymane wyniki potwierdziły występującą bezwładność badanego procesu. W przypadku scenariusza (c), 1 gazy wypływały do atmosfery przez okres godziny po zmianie tendencji barycznej ze zniżki na zwyżkę. Rozpatrując scenariusz (a), dowiedziono, że emisja gazów może nie wystąpić mimo zachodzącej zniżki ciśnienia atmosferycznego. Może to mieć kluczowe znaczenie przy określaniu zagrożenia gazowego na powierzchni terenu lub wyznaczaniu intensywności emisji gazów z górotworu. Scenariusz (b) był scenariuszem porównawczym i służył do walidacji modelu. Dla tego scenariusza otrzymano maksymalne stężenie CO2 wynoszące 2.18%vol (wartość porównywalna ze stwierdzoną podczas pomiarów) oraz natężenie emisji CO2 równe 0.15kg/s. W przeliczeniu na emisję godzinną jest to 514kg CO2/h. Wartość ta ma znaczenie pod kątem emisji gazów cieplarnianych do atmosfery.
11
Content available remote Numerical modelling of underventilated fire in a compartment
EN
Numerical analysis of fire development in a closed compartment was carried out. Three cases were analyzed: a compartment with one, two and three ventilation openings. The influence of the number of ventilation openings on indoor conditions was investigated. The distributions of temperature, of mass fraction of O2, CO2 also well the flow rate through the bottom opening were considered. Analyses have shown that only three ventilation openings in the compartment give the balanced conditions. This means that the outside air is supplied with the bottom opening and the hot smoke is removed with the upper openings. The research also allowed to look at the conditions prevailing in the room during the development of the underventilated fire. The Ansys Fluent program was used to solve the numerical model. In addition, the User Defined Functions (UDF) were used for numerical analyzes. It allowed for modeling the dependence of air pressure in the ventilation openings on the height.
PL
Przeprowadzono analizy numeryczne rozwoju pożaru w zamkniętym pomieszczeniu. Poddano analizie trzy przypadki, pomieszczenie z jednym, dwoma i trzema otworami wentylacyjnymi. Badano wpływ wielkości otworów wentylacyjnych na warunki panujące wewnątrz. Rozpatrywano rozkłady stężenia O2, CO2, temperatury oraz strumień objętości przepływający przez dolny otwór. Analizy pokazały, że dopiero przy trzech otworach w pomieszczeniu panują zrównoważone warunki. Oznacza to, że powietrze zewnętrzne dostarczane jest dolnym otworem a gorący dym jest usuwany górnymi otworami. Badania pozwoliły przyjrzeć się warunkom panującym w pomieszczeniu, w którym rozwija się pożar ograniczony wentylacja. W badaniach wykorzystano program Ansys Fluent, za pomocą którego rozwiązano model numeryczny. Dodatkowo w analizach numerycznych wykorzystano funkcje User Defined Function (UDF). Pozwoliła ona na uzależnienie ciśnienia powietrza w otworach wentylacyjnych od wysokości.
EN
The paper presents an analysis of the fluid flow in the cooling system of an internal combustion engine with oposite pistons. The purpose of the work was to optimize the flow of fluid through the channels located in the engine block. Simulation studies and subsequent iterations were performed using Ansys Fluent software. Two-equation k-epsilon turbulence model was used in the simulation model. Boundary and initial conditions were taken from previously made simulations conducted in AVL Boost software. The average wall temperature of the cylinder and the temperature of the outer walls of the cylinder were assumed for simulations. The results of the analyzes were graphically illustrated by the speed streamline distribution of velocity fields and temperature.
PL
Przedstawiono wyniki badań nowego nawiewnika zwiększającego efektywność wentylacji systemu VAV (Variable Air Volume). Zbadano wpływ dynamicznie zmieniającej się geometrii nawiewnika na efektywność systemu wentylacyjnego. Jako wskaźnik poprawności działania systemu wybrano zasięg strugi powietrza przy zmieniającym się strumieniu nawiewu, gdyż w dotychczasowych rozwiązaniach zasięg ten zmniejsza się wraz z malejącym przepływem przez system wentylacyjny. Badania przeprowadzono w dwóch etapach. W pierwszym etapie przeprowadzono laboratoryjne badania nawiewnika bez zmiennej geometrii i wykazano, że gdy maleje strumień powietrza przepływające przez system to spada zasięg strugi. Następnie dokonano symulację komputerowa stosując metodę CFD. Pierwsze symulacje odzwierciedlały warunki na stanowisku laboratoryjnym i posłużyły jako symulacje wzorcowe do dalszych badań. Po uzyskaniu zgodności symulacji i badań laboratoryjnych, w dalszych symulacjach dokonano modyfikacji geometrii nawiewnika i zbadano wpływ tych zmian na zasięg strugi powietrza przy malejącym przepływie powietrza w systemie VAV. Wyniki symulacji wykazały, że zaproponowane zmiany w geometrii poprawiają efektywność systemu wentylacji i umożliwiając utrzymanie stałego zasięgu strugi przy zmiennym przepływie powietrza w systemie.
EN
The article presents the research on the creation of a new diffuser to improve the effectiveness of VAV (Variable Air Volume) systems. It focuses on studying the impact of a diffuser with a dynamically changing geometry on the effectiveness of the ventilation system. The air flow reach was taken under consideration as an indicator showing, whether the system operated properly. In existing solutions, the airflow range differs depending on the flow through the system and decreases when the airflow lowers. The research was divided into two stages. First, laboratory tests were conducted on a laboratory stand that included an inlet without a changing geometry. The tests showed that the air flow range decreased with the lowering of the air flow through the ventilation system. The second stage included a series of CFD computer simulations. The first simulations reflected the conditions on the laboratory stand and served as base simulations. After achieving a good correlation of the base simulations and the laboratory measurements, the geometry of the inlet was altered to reflect an inlet with a dynamically changing geometry. The results of the simulations showed that the changes in the geometry of the inlet improve the ventilation effectiveness of a VAV system, allowing the system to maintain a constant airflow range.
EN
A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated in the present research. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are injected into the reactor from centres of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction multicomponent transport model with the CFD software ANSYS©Fluent v. 13.0. Effect of operating conditions on TG conversion is particularly investigated. Simulation results indicate that there is occurrence of back flow close to the stator at the outlet zone. Small gap size and fast rotational speed generally help to intensify mixing among reagents, and consequently enhance TG conversion. However, increasing rotational speed of spinning disk leads to more backflow, which decreases TG conversion. Large flow rate of TG at inlet is not recommended as well because of the short mean residence time of reactants inside the reactor.
15
Content available remote Wind influence on a building with the natural smoke removal system
EN
The natural smoke removal is a common way of protection of the escape routes in Poland. The operation of such systems is based on the phenomenon of buoyancy. The intensity of this effect depends on the temperature difference between smoke and ambient air. The second factor influencing the natural smoke flow inside a building is wind. The wind influence is significantly important for buildings equipped with smoke removal windows. However, also the other natural smoke removal systems could be affected by the wind impact under adverse ambient conditions. There are the features of the wind described in the first section of the paper. Next, the impact of the wind on a building is shown. Two wind speeds and two wind directions were considered. A building model in the extended computational domain was built. The model was solved with the use of Ansys Fluent. The distributions of dynamic pressure caused by the wind on different facades of the building were presented. The particular attention was paid to the dependence of pressure distribution on the wind direction.
PL
Oddymienie naturalne budynków jest powszechnym sposobem ochrony dróg ewakuacyjnych w Polsce. Działanie systemu opiera się na sile wyporu termicznego. Wielkość tej siły uzależniona jest od różnicy temperatury miedzy temperaturą dymu a temperaturą otoczenia. Drugim czynnikiem wpływającym na naturalny przepływ dymu w budynku jest wiatr. Oddziaływanie wiatru ma największe znaczenie dla budynków wyposażonych w okna oddymiające. Jednakże również pozostałe systemy oddymiania naturalnego mogą w niekorzystnych warunkach pozostawać pod wpływem działania wiatru. W pierwszej części artykułu omówiono cechy charakterystyczne wiatru. W dalszej kolejności pokazano jaki wpływ na budynek może wywierać wiatr. Rozważono dwie prędkości napływu wiatru oraz dwa kierunki napływu. Zbudowano model budynku wraz z poszerzona domeną obliczeniowa. Model rozwiązano wykorzystują program Ansys Fluent. Zaprezentowano rozkłady ciśnień, które mogą tworzyć się na fasadach budynku w przypadku działania wiatru na budynek. Zwrócono uwagę na wpływ kierunku napływu wiatru na tworzący się na fasadach układ ciśnień.
PL
Brak możliwości przeprowadzenia rzeczywistych badań rozwoju pożaru w projektowanym obiekcie powoduje, że symulacje numeryczne pozostają jedyną drogą, która pozwala na określenie skali zagrożenia dla życia i zdrowia osób. Zatem wykorzystanie programów realizujących numeryczną mechanikę płynów w zagadnieniach bezpieczeństwa pożarowego stało się konieczne. Stosuje sieje do analizowania sposobu rozprzestrzeniania się dymu i ciepła w czasie rozwoju pożaru co pozwala równocześnie ocenić warunki panujące na drogach ewakuacyjnych. Programy numeryczne dają również możliwość badania działania poszczególnych urządzeń ochrony przeciwpożarowej takich jak tryskacze czy wentylatory oddymiające lub osiowe. W pracy pokazano rozwój pożaru w realnym obiekcie infrastruktury transportowej - w podziemnym garażu. Analizy numeryczne zostały wykonane za pomocą pakietu ANSYS FLUENT. Oprogramowanie to umożliwia budowę bardzo dokładnego modelu badanego zjawiska ze szczegółowym uwzględnieniem zachodzących w trakcie pożaru procesów.
EN
Inability to perform actual tests of fire development in the designed facility makes the numerical simulations to be the only way which allows to determine the scale of the threat to life and health of people. Therefore, the use of programs implementing numerical fluid mechanics in issues of fire safety has become necessary. They are used to analyze the spreading of smoke and heat during the development of a fire, thus allow to assess conditions on escape routes. Numerical programs provide also the opportunity to study the effect of various fire protection devices, such as sprinklers or smoke exhaust fans or axial fans. The work shows the development of a fire in a facility of transport infrastructure - in an underground garage. Numerical analyses were performed using ANSYS FLUENT package. This software allows to build a very accurate model of the studied phenomenon with particular focus on occurring during a fire processes.
17
Content available remote Optymalizacja numeryczna otunelowanego napędu śmigłowego
PL
Artykuł jest podsumowaniem numerycznej optymalizacji łopaty śmigłowej w otoczeniu dyszy przyspieszającej (dyszy Korta). Przedstawione zagadnienia dotyczą wykorzystania metody CFD do analizy tego typu konstrukcji, a także zaawansowanych metod pre- i postprocessingu oraz optymalizacji numerycznej z użyciem algorytmów genetycznych. Celem badań było wyznaczenie parametrów geometrycznych łopaty śmigła otunelowanego w obecności kadłuba o zdefiniowanej geometrii, tak aby zmaksymalizować ciąg statyczny przy zadanych parametrach napędowych na wale silnika.
EN
This article presents a short summary of the performed numerical optimization of a blade of ducted propeller (Kort nozzle). Presented issues take into consideration applicability of CFD calculations for such devices, advanced pre/postprocessing methods and numerical optimization through genetic algorithms. The main goal of this research was to obtain the best set of geometry parameters of the blade in vicinity of an unmodifiable fuselage such, that the static thrust was maximized at the known parameters as checked on the engine shaft.
EN
One of the most dangerous and most commonly present risks in hard coal mines is methane hazard. During exploitation by longwall system with caving, methane is emitted to mine heading from the mined coal and coal left in a pile. A large amount of methane also flows from neighboring seams through cracks and fissures formed in rock mass. In a case of accumulation of explosive methane concentration in goaf zone and with appropriate oxygen concentration and occurrence of initials (e.g. spark or endogenous fire), it may come to the explosion of this gas. In the paper there are presented results of numerical analysis of mixture of air and methane streams flow through the real heading system of a mine, characterized by high methane hazard. The aim of the studies was to analyze the ventilation system of considered heading system and determination of braking zones in goaf zone, in which dangerous and explosive concertation of methane can occur with sufficient oxygen concentration equal to at least 12%. Determination of position of these zones is necessary for the selection of appropriate parameters of the ventilation system to ensure safety of the crew. Analysis of the scale of methane hazard allows to select such a ventilation system of exploitation and neighboring headings that ensures chemical composition of mining atmosphere required by regulation, and required efficiency of methane drainage. The obtained results clearly show that numerical methods, combined with the results of tests in real conditions can be successfully used for the analysis of variants of processes related to ventilation of underground mining, and also in the analysis of emergency states.
PL
ednym z najbardziej niebezpiecznych i najczęściej występujących zagrożeń w kopalniach węgla kamiennego jest zagrożenie metanowe. Przy eksploatacji systemem ścianowym z zawałem skał, metan wydziela się do wyrobisk górniczych z urabianego oraz pozostawionego w zawale węgla. Duża ilość metanu dopływa także z pokładów sąsiednich przez powstałe w górotworze szczeliny i spękania. W przypadku nagromadzenia się metanu o stężeniu wybuchowym w zrobach zawałowych i przy odpowiednim stężeniu tlenu oraz wystąpieniu inicjału (np. iskra lub pożar endogeniczny), może dojść do wybuchu tego gazu. W artykule przedstawiono wyniki analizy numerycznej przepływu mieszaniny strumienia powietrza i metanu przez rzeczywisty układ wyrobisk jednej z kopalń, charakteryzującej się dużym zagrożeniem metanowym. Celem badań była analiza systemu wentylacyjnego rozpatrywanego układu wyrobisk oraz wyznaczenie w zrobach ściany zawałowej stref, w których mogą wystąpić niebezpieczne, wybuchowe stężenia metanu przy dostatecznym stężeniu tlenu wynoszącym min. 12%. Wyznaczenie położenia takich stref jest konieczne dla doboru odpowiednich parametrów systemu wentylacyjnego w celu zapewnienia bezpieczeństwa pracy załogi. Analiza skali zagrożenia metanowego pozwala na dobranie takiego systemu przewietrzania ściany eksploatacyjnej i sąsiednich wyrobisk, który zapewni wymagany przepisami skład chemiczny atmosfery kopalnianej, a także wymaganą efektywność procesu odmetanowania. Uzyskane rezultaty jednoznacznie dowodzą, iż metody numeryczne, w połączeniu z wynikami badań w warunkach rzeczywistych mogą z powodzeniem być stosowane do wariantowych analiz procesów związanych z przewietrzaniem podziemnych wyrobisk górniczych, a także w analizach stanów awaryjnych.
EN
Paper presents a method of calculating the temperature distribution in cylinder for a 2-stroke, opposed-piston (OP) internal combustion engine (ICE). Development of such machines has been very limited after World War II due to technological and ecological problems [9], therefore progress in numerical modeling for analyzing highly boosted OP engines was also halted. Current technology permits returning to the OP arrangement, where due to better combustion chamber shape it is potentially possible to achieve higher thermodynamic efficiency than in arrangement with the cylinder head [9, 10]. Authors decided to use a general purpose CFD-program (in this case Ansys Fluent) coupled with additional tools to calculate conjugated heat transfer between the load in the cylinder and the cylinder itself to get a 3D temperature distribution in solid body.
PL
Artykuł prezentuje metodę wyznaczania temperatury cylindra dla dwusuwowego silnika wewnętrznego spalania o tłokach przeciwbieżnych (opposed piston – OP). Rozwój takich maszyn po II wojnie światowej został mocno ograniczony z powodu problemów technologicznych i ekologicznych [9] i w związku z tym rozwój modelowania numerycznego, w celu analizy wysoko doładowanych silników typu OP, również został zahamowany. Obecny rozwój techniki pozwala powrócić do konstrukcji typu OP, w których z racji korzystniejszego kształtu komory spalania możliwe jest uzyskanie potencjalnie większej sprawności termodynamicznej niż w układzie z głowicą [9, 10]. Do obliczenia wymiany ciepła między ładunkiem w cylindrze a cylindrem, by otrzymać trójwymiarowy rozkład temperatury w ciele stałym, wykorzystano programu CFD ogólnego zastosowania (w tym przypadku Ansys Fluent) sprzężony z dodatkowymi narzędziami.
PL
W niniejszej pracy przedstawiono aktualne tendencje w numerycznym modelowaniu przepływów turbulentnych oraz założenia i ograniczenia przy modelowaniu turbulencji metodami RANS, DNS oraz LES. Przedstawiono również pakiet Ansys FLUENT jako narzędzie CFD do symulacji przepływów turbulentnych na przykładzie opływu aerodynamiki modelu autobusu miejskiego oraz ogólne informacje dotyczące sposobów numerycznego rozwiązywania zagadnień brzegowych transportu.
EN
This paper presents the current trends in the numerical modeling of turbulent flows and the limitations of the conven-tional turbulence models like RANS, DNS and LES. It also presents the general usability of the Computional Fluid Dynamics (CFD) in process of studying aerodynamics of the city busses.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.