Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  AMMC
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Currently, the world of material requires intensive research to discover a new-class of materials those posses the properties like lower in weight, greater in strength and better in mechanical properties. This led to the study of light and strong alloys or composites. This study focuses to produce current novel aluminium composite with an appreciable density, good machinable characteristics, less corrosive, high strength, light weight and low manufacturing cost product. In this research, an aluminium metal matrix composites (AMMC) (Al-0.5Si-0.5Mg-2.5Cu-15SiC) was developed using the metallurgical powdered method and subjected to the investigation of erosion wear characteristics. Here the solid particle erosion test was conducted on AMMC samples. The article presents, the design of Taguchi experiments and statistical techniques of erosion wear characteristics and the behaviors of the composite. The rate of erosion wear found to decrease with increasing impact angle, regardless of the rate of impact. With higher impact velocity erosion rate increases but decreases with stand of distance.
EN
Metal matrix composites (MMC) are finding application in many fields such as aerospace and automobile industries. This is due to their advantages such as light weight and low cost. Among all the available non-traditional machining processes, wire electric discharge machining (WEDM) is found to be a suitable method for producing complex or intricate shapes in composite materials. In this study, an aluminum metal matrix composite (AMMC) with 6% and 8% weight (wt) fraction of Al2O3 is prepared through the stir casting process. The fabricated AMMC specimen is machined using WEDM, considering various process parameters such as wt % of reinforcement, gap voltage (Vg), peak current (IP) wire tension (WT) and dielectric pressure (Pd). Output responses such as the machining rate (MR) and surface roughness (Ra) of the slots are analyzed by conducting L18 mixed orthogonal array (OA) experiments. The experiments are analyzed using techniques for order preference by similarity to ideal solution (TOPSIS) and analysis of variance (ANOVA). Based on the analyses, the optimum combination of process parameters for better MR and Ra is as follows: wt % =  6 gm, Vg = 53 V, Ip = 8 A, WT = 11 g, Pd = 13 bar. The optimum level of process parameters for MR and Ra are 1.5 mm/min and 3.648 µm, respectively. Based on ANOVA, the peak current is found to have a significant influence on MR and Ra. Moreover, based on a scanning electron microscope (SEM) image, the presence of micro-ridges, reinforcement, micro-craters, micro-cracks, recast layers and oxide formation are all analyzed on the surface being machined.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.