Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  AISI 316LVM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The objective of the study is assessment of suitability of the ALD method for application of a TiO2 layer on surface of 316LVM steel used for production of vessel stents. Selection of the appropriate process parameters for application of the layer affects its electrochemical properties, which largely determine resistance of the biomaterial to corrosion in the blood environment, thus affecting its hemocompatibility. To assess resistance of the AISI 316LVM steel with modified surface to corrosion, voltammetric and impedance measurements were conducted. The proposed variant of surface processing allows safe deformation of the TiO2 layer without its delamination.
2
Content available remote Biomechanical analysis of the femurDynamic Condylar Screw (DCS) system
EN
Purpose: The aim of this study was a biomechanical evaluation of the (Dynamic Condylar Screw - DCS) system after epicondyle fractures and a comparison of obtained results of the two alternative biomaterials for the stabilizer. Design/methodology/approach: Models of stabilizer and femur were designed, the discretization was conducted and boundary conditions were set. Numerical analysis with the use of the finite element method was performed in the ANSYS Workbench 15 Software. Two models of system: M-316 LVM (stabilizer with properties CrNiMo steel - femur) and M-Ti64 (stabilizers with properties Ti6Al4V alloys – femur) were subjected to numerical analysis. As a reference point the state of displacement, strain and von Misses stresses by in helfy femur (M-HF) were determined. Findings: For all of the analysed models, the values of assumed mechanical properties of cortical bone and cancellous bone were not exceeded. Simultaneously, it is possible to use alternative biomaterials, CrNiMo steel or Ti6Al4V alloy for DCS system. Research limitations/implications: In order to perform more detailed characteristics of analysed DCS implant, in future research it is expected to carry out macro and microscopic observations for implants removed from the body and their electrochemical evaluation. Practical implications: The analysis allows the determination of potentially dangerous areas, affected to damage due to overloading. Furthermore, the analysis identifies the areas of initiation and development of crevice, pitting and fatigue corrosion. Originality/value: The presented work allows the selection of alternative metallic biomaterials for the manufacturing of the evaluated DCS system and indicates its potentially dangerous area. This work might be interesting for engineers and doctors dealing with the construction of a new forms of implants used in orthopedics.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.