Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  AISI 304L stainless steel
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Based on the experimental study of cavitation water jet impact on microforming, a single round hole micro-die was used in this paper. The effect of different process parameters on the performance of 304 stainless steel foil was examined, which involves the nanometer hardness, and elastic modulus. The nano-indentation tester was used to test the nano-hardness of the formed part, and the performance of the workpiece before and after the impact was analyzed. The nano hardness and elastic modulus increased significantly with an increase in the incident pressure. When the incident pressure was 20 MPa and the impact time of 5 min, the hardness increased by at least 122%, and the elastic modulus increased by at least 76%. After the cavitation water jet shocked the metallic foil of the SEM analysis and the results indicated that, as the incident pressure increases, the surface morphology of the formed part changes from approximately spherical to spherical, and the spherical roundness increases. In addition, there were different degrees of defects at the bottom of the formed part, and as the incident pressure increased, the bottom defects became more and more obvious, from micro-cracks to micro-layer cracks.
EN
Purpose: Determination of the tensile behavior of welded constructions made of austenitic stainless steel in corrosive environments is of great importance for the safer use of the construction. When austenitic stainless steels are welded together, welding defects can occur in some cases. And stainless steels are used in corrosive environments. Thus, we are aimed to investigate the effect of welding defects the tensile behavior in corrosive environment of AISI 304 L stainless steel joined with shielded metal electrode. Design/methodology/approach: Hardness measurements and micro-macro structures examination were made before the corrosion test to characterize the structure of the weld zone. Corrosion tests were carried out in accordance with EN ISO 9227 by exposing the welded tensile specimens to salt spray for 24-96-240-480-720-1000 hours. After the salt spray test, tensile tests were performed. The fractured surfaces were examined following the tensile tests by scanning electron microscope (SEM). Findings: A significant decrease in the tensile strength of the material was observed with the increase of the salt spraying period as a result of the tests. It is worth noting that corrosion products were occurred especially in the areas of welding defects. Research limitations/implications: This study was performed on materials containing welding defects. In addition, the corrosive environment was provided by salt spraying. It should not be forgotten that the materials may behave differently in different corrosive environments. Originality/value: While there are studies regarding effects of welding defects and corrosion individually, no study has been found in the literature which considers the effect of welding defects within corrosive environments on the material strength. Therefore, this study presents novel findings by considering both detrimental effects at the same time. The study shows significant decrease in strength of the material due to welding defects and corrosive environment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.