Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ADN
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Several industrial and research types of nitrate-ester plasticized polyether (NEPE) solid propellants were experimentally analyzed. In general, their compositions differed in the mass fraction of ammonium dinitramide (ADN), which was used as a promising highly energetic filler, as an alternative to ammonium perchlorate (AP). ADN exhibits high performance, low signature and non-polluting characteristics. The propellant composition without ADN, but with AP, was used as the reference. The microstructure and granularity distribution of the uncoated and coated ADN particles were experimentally analyzed. It was found that uncoated ADN particles exhibited irregular shape, while the ADN particles after coating are spherical. Because of their irregular shape, uncoated ADN particles caused inferior processability of the propellant slurry when added to the propellant formulation. Consequently, the NEPE propellants with coated ADN were studied in further detail. The rheological properties, energetic properties, mechanical sensitivities and combustion properties (burning rate and pressure exponent) of the NEPE propellants with coated ADN were studied and compared with the reference NEPE propellant. The addition of ADN particles to the propellant formulations increased the standard theoretical specific impulse and heat of explosion of the propellants, while decreasing the density. The propellants containing ADN particles were much more sensitive to impact and friction compared to the reference sample. Moreover, increasing the ADN mass fraction in the propellant formulation can significantly affect the combustion behaviour and increase the burning rate and pressure exponent compared to of the reference formulation. However it appears that ADN is a very promising candidate as a new energetic material in compositions of NEPE propellants, although several important questions concerning ADN’s suitability, especially in the context of its sensitivity to friction and impact, remain to be answered.
PL
Transport towarów niebezpiecznych może być realizowany poprzez transport drogowy – ADR, transport kolejowy – RID, transport materiałów niebezpiecznych śródlądowymi drogami wodnymi – ADN, transport morski materiałów niebezpiecznych – IMDG, transport lotniczy materiałów niebezpiecznych – ICAO IT.
PL
W artykule zawarto zestawienie i omówienie ekologicznych materiałów pędnych będących obecnie tematem najliczniejszych publikacji w zakresie badań nad ciekłymi rakietowymi materiałami pędnymi stanowiącymi realną alternatywę dla obecnie stosowanych mieszanin typu MMH/MON, UDMH/NTO, czy hydrazyna. Należą do nich ADN, HAN, HNF oraz HTP. Dodatkowo, przedstawione zostały programy badań kosmicznych, gdzie jako źródło napędu platform satelitarnych zastosowanie znalazły opisane ekologiczne materiały pędne. Przedstawiono również wyzwania stojące przed konstruktorami pracującymi nad silnikami na ciekłe materiały pędne, a także trendy dotyczące ich przyszłych zastosowań.
EN
This article contains the survey of the non-toxic, environment friendly and low cost, green propellants being intensively investigated by the space propulsion communities. These propellants represent compounds with the highest potential to be used as an alternatives for the mixture of MMH/MON, UDMH/NTO or hydrazine in monopropellant propulsion. They include ADN, HAN, HNF and HTP. Additionally, the newest space missions with the utilization of the green propellants in their ACS (Attitude Control Systems) were described. The new challenges for the design and determination of the current trends in the field of development of the liquid rocket engines are also included.
EN
X-ray powder diffraction (XRD) is an established tool for the investigation of energetic materials. Whereas positions and intensities of diffraction peaks yield information on the crystal structure, peak profles are related to the real structure described by crystallite size, shape and microstrain. A series of energetic materials were measured at the synchrotron ANKA, and the size/strain broadening of FOX-7, RDX and ADN is discussed in relation to crystal structures and properties.
5
Content available remote Particle Design of Energetic Materials
EN
The crystal quality and the internal microstructure of crystals have a great influence on the sensitivity of energetic materials. Besides, the particle size and the particle size distribution are of great importance to the processing technology of energetic materials. Particle properties can especially be influenced by applying different crystallization techniques, such as cooling crystallization, membrane crystallization, emulsion crystallization and others. The objective of the investigations was to determine the interrelationship between the properties of the gained crystals and the process parameters. Special attention was directed to the qualitative and quantitative examination of crystal defects and their dependence on the experimental conditions. Besides, the morphology and structure of crystals were calculated by molecular modelling. The effect of crystal defects on the sensitivity of the material was tested on different collectives of particles having varying amount of crystal defects.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.