The article presents the use of swarming algorithms in selecting the heat transfer coefficient, taking into account the boundary condition of the IV types. Numerical calculations were made using the proprietary TalyFEM program and classic form of swarming algorithms. A function was also used for the calculations, which, during the calculation, determined the error of the approximate solution and was minimalised using a pair of individually employed algorithms, namely artificial bee colony (ABC) and ant colony optimisation (ACO). The tests were carried out to select the heat transfer coefficient from one range. Describing the geometry for a mesh of 408 fine elements with 214 nodes, the research carried out presents two squares (one on top of the other) separated by a heat transfer layer with a κ coefficient. A type III boundary condition was established on the right and left of both edges. The upper and lower edges were isolated, and a type IV boundary condition with imperfect contact was established between the squares. Calculations were made for ABC and ACO, respectively, for populations equal to 20, 40 and 60 individuals and 2, 6 and 12 iterations. In addition, in each case, 0%, 1%, 2% and 5% noise of the reference values were also considered. The obtained results are satisfactory and very close to the reference values of the κ parameter. The obtained results demonstrate the possibility of using artificial intelligence (AI) algorithms to reconstruct the IV type boundary condition value during heat conduction modelling.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The ACO (Ant Colony Optimization) algorithm is a bio-inspired metaheuristic used to optimize problems or functions described by graphs, sequences of events, or queues of tasks. It is used, among a variety of other purposes, when routing Internet network packets, determining the shortest routes between designated points (traveling salesman's problem), for the time and cost optimization of production, or setting public transport stops. In the article, the ACO algorithm was used to autonomously construct the optimal route for an unmanned aerial vehicle (UAV). The algorithm establishes the spatial orientation of the UAV, indicating the direction of its transition for each intermediate waypoint. The results of the simulations show the trajectory of the UAV depending on the selected weighting factors, determining the priority of avoiding detected hazards or choosing the shortest path. The quality of each variant is evaluated numerically by the calculated fitness function, the value of which is the sum of the costs of the transition to each intermediate route point. The effect of the algorithm is a set of executable trajectory variants, of which the one with the best fitness value is selected.
PL
Algorytm ACO (ang. Ant Colony Optimization) jest bio-inspirowaną metaheurystyką, wykorzystywaną do optymalizacji problemów lub funkcji opisywanych za pomocą grafów, sekwencji zdarzeń, czy też kolejki zadań. Znajduje on zastosowanie m.in. przy trasowaniu pakietów sieci internetowych, wyznaczaniu najkrótszych tras między wyznaczonymi punktami (problem komiwojażera), optymalizacji czasu i kosztu produkcji, czy też ustalaniu przystanków transportu publicznego. W artykule, algorytm ACO został wykorzystany do autonomicznego wyznaczenia optymalnej trasy dla bezpilotowego statku powietrznego (BSP). Algorytm ustala orientację przestrzenną BSP, determinującą kierunek jego przemieszczenia dla każdego pośredniego punktu docelowego. Wyniki przeprowadzonych symulacji przedstawiają trajektorię BSP w zależności od dobranych współczynników wagowych, określających priorytet ominięcia wykrytych zagrożeń lub wybrania najkrótszej drogi. Jakość każdego wariantu jest określana liczbowo poprzez ustaloną funkcję dopasowania, której wartość stanowi suma kosztów przejścia do każdego pośredniego punktu trasy. Efektem działania algorytmu jest zbiór wykonywalnych wariantów trajektorii, z których wybrany zostaje ten o najlepszej wartości dopasowania.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the paper a proposal of using selected swarm intelligence algorithms for solving the inverse heat conduction problem is presented. The analyzed problem consist s in reconstructing temperature distribution in the given domain and the form of heat transfer coefficient ap pearing in the boundary condition of the third kind. The investigated approaches are based on the Art ificial Bee Colony algorithm and the Ant Colony Optimization algorithm, the efficiency of which are ex amined and compared
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.