Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 93

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ABS
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
EN
The purpose of this study is to determine the effect of manufacturing conditions on the mechanical properties and structure of ABS parts. Two sets of samples with the same geometric characteristics were produced by fused deposition modelling (FDM) and injection molding (IM). The molding pressure and cooling rate were found to have a significant effect on shaping the mechanical properties and structure of ABS products. The manufacturing method and adopted process parameters have a significant impact on the degree of packing of macromolecules in the volume of the product and thus determine its density. Selected mechanical properties were determined and compared with their specific gravity. The research was carried out using tools and machines, i.e. injection molds of unique design and standard measuring stations. Tensile and bending strengths and Young’s modulus were related to the density of products obtained under different process conditions and having gradient and solid structures. The results provide useful information for engineers designing products using FDM technology. Relating tensile and flexural strength and Young’s modulus to the specific gravity of the product. It was found that the value of product properties is closely related to various process conditions, which further provides a true description of the products.
EN
The subject of the article is the influence of filament moisture on the quality of products manufactured using the additive method using the Fused Deposition Modelling (FDM) method. Three types of thermoplastic polymers were tested: ABS, PLA and PET-G. The polymers were stored in environments with different humidity. The moisture content of the filament was determined as the water content in the material expressed as a percentage by weight. To obtain the expected humidity of the samples, they were conditioned for 7 days in tightly closed containers with constant humidity of 40%, 60% and 80%. After the sample conditioning process was completed, they were removed from the container and subjected to further tests. The influence of filament humidity on selected properties of manufactured products is presented, such as: surface quality of the obtained samples, tensile strength and dimensional repeatability. To sum up, the method of storing the filament affects the moisture content of the filament. The humidity of the filament, in turn, affects the quality of products manufactured using the FDM method, including: on: mechanical properties, dimensional stability, Surface appearance. Therefore, it is important in what conditions the filament is stored before the production process begins.
EN
Fused Deposition Modeling (FDM) is a widely used 3D printing technology that can create a diverse range of objects. However, achieving the desired mechanical properties of printed parts can be challenging due to various printing parameters. Residual stress is a critical issue in FDM, which can significantly impact the performance of printed parts. In this study, we used Digimat-AM software to conduct numerical simulations and predict residual stress in Acrylonitrile Butadiene Styrene (ABS) material printed using FDM. We varied six printing parameters, including printing temperature, printing speed, and infill percentage, with four values for each parameter. Our results showed that residual stress was positively correlated with printing temperature, printing speed, and infill percentage, and negatively correlated with layer thickness. Bed temperature did not have a significant effect on residual stress. Finally, using a concentric infill pattern produced the lowest residual stress. The methodology used in this study involved conducting numerical simulations with Digimat-AM software, which allowed us to accurately predict residual stress in FDM-printed ABS parts. The simulations were conducted by systematically varying six printing parameters, with four values for each parameter. The resulting data allowed us to identify correlations between residual stress and printing parameters, and to determine the optimal printing conditions for minimizing residual stress. Our findings contribute to the existing literature by providing insight into the relationship between residual stress and printing parameters in FDM. This information is important for designers and manufacturers who wish to optimize their FDM printing processes for improved part performance. Overall, our study highlights the importance of considering residual stress in FDM printing, and provides valuable information for optimizing the printing process to reduce residual stress in ABS parts.
EN
Durability of polymer (PCTG, ABS, PLA) chain gears with a modular chain obtained by 3D printing (FFF - Fused Filament Fabrication) was tested under static and dynamic conditions. An analysis was performed using finite element modeling (FEM). The PLA gear showed the highest tensile strength, and the PCTG gear the lowest. However, in dynamic conditions (rotational speed 750 min-1), the ABS gear was characterized by the smallest deformation and the longest operating time. Chain links were damaged at the point of connection during both static and dynamic tensile tests. Probably the surface of the hole where the chain links were joined was not smooth enough, which could lead to their damage.
PL
W warunkach statycznych i dynamicznych zbadano wytrzymałość na rozciąganie polimerowych (PCTG, ABS, PLA) przekładni łańcuchowych z łańcuchem o budowie modułowej otrzymanych metodą druku 3D. Przeprowadzono analizę metodą modelowania elementów skończonych (MES). Największą wytrzymałość wykazywała przekładnia wykonana z PLA, a najmniejszą z PCTG. Natomiast w warunkach dynamicznych (prędkość obrotowa 750 min-1) przekładnia z ABS charakteryzowała się najmniejszym odkształceniem i najdłuższym czasem pracy. Ogniwa łańcucha zarówno podczas statycznych, jak i dynamicznych testów rozciągania ulegały uszkodzeniu w miejscu ich łączenia. Prawdopodobnie powierzchnia otworu w miejscu łączenia ogniw łańcucha nie była wystarczająco gładka, co mogło prowadzić do ich uszkodzenia.
EN
The main objective of this work was to characterize the viscoelastic properties of additively manufactured Acrylonitrile Butadiene Styrene based on tensile stress relaxation tests. The stress relaxation measurements were conducted with a temperature range of 25–100°C. The two-layer viscoplastic constitutive model was adopted to describe the elastic and viscous behavior of the investigated material. The model parameters were calibrated using an inverse analysis and stress relaxation data. The model’s predictive capabilities were assessed by comparing the model predictions with experimental data not included in the calibration process.
EN
Fused Deposition Modeling is an additive manufacturing technology that is used to create a wide range of parts and applications. Along with its benefits, there are some challenges regarding the printed parts' mechanical properties, which are associated with printing parameters like layer thickness, printing speed, infill density, printing temperature, bed temperature, infill pattern, chamber temperature, and printing orientation. One of the most crucial challenges in additive manufacturing technology is the residual stress, which significantly affects the parts like fatigue life, cracks propagation, distortions, dimensional accuracy, and corrosion resistance. Residual stress is hard to detect in the components and sometimes is costly to investigate. Printing specimens with different parameters costs money and is timeconsuming. In this work, numerical simulation using Digimat-AM software was employed to predict and minimize the residual stress in printed Acrylonitrile Butadiene Styrene material using Fused Deposition Modeling technology. The printing was done by choosing six different printing parameters with three values for each parameter. The results showed a significant positive correlation between residual stress and printing temperature and infill percentage and a negative correlation with layer thickness and printing speed. At the same time, we found no effect of the bed temperature on the residual stress. Finally, the minimum residual stress was obtained with a concentric infill pattern.
EN
In this paper, the research progress of ammonium bisulfate (ABS) volatilization in coal-fired power plants the SCR denitrification process was reviewed. Combination with self-made experiments, SEM, flue gas analyzer and TG-DTG curves of ABS and ion chromatography. The volatilization and condensation characteristics of ABS were investigated carefully. Results show that as the temperature increased by 50 °C, the ABS/AS volatilization rate increased by an order of magnitude. The decomposition process of ABS should have a two-step reaction. The reaction in the initial volatilization stage is ABS dehydration turned into (NH4)2S2O7. The reaction in the rapid volatilization stage is (NH4)2S2O7 decomposed into NH3, N2, SO2 and H2O. There is an inter-section in the reac-tion temperature range (especially 300 °C) between the two-step reaction. This research provides an experimental basis for temperature control of ABS to avoid air pre-heater fouling.
EN
Purpose: Many manufacturers have recently become interested in using fiber-reinforced polymer composites (FRPs) in structural applications. Synthetic fibres, such as carbon and glass fibres, have been commercialised internationally for decades, but they cause environmental issues because synthetic fibres are non-biodegradable and difficult to recycle once they have served their purpose, potentially polluting the environment. Thus, natural fibre composites like kenaf is a possible replacement for synthetic fibre due to their superior physical and mechanical properties. Kenaf appears to be the best candidate for replacing synthetic fibres in order to accomplish the goal of environmental preservation while also displaying excellent properties such as equivalent specific strength, low density, and renewable resources. Design/methodology/approach: The kenaf fiber was treated in KOH and added to ABS matrix to produce new composites at different loading (10, 15, 20 and 25 wt.%) by using Two Roll Mill machine. The influence of the fiber on the composites properties was evaluated. The produced material was subjected to SEM, MFI, TGA and DSC analysis. Findings: The incorporation of the treated kenaf fiber has an influence on the properties of kenaf/ABS composites. The addition of 10 wt.% kenaf was found to be the best loading with MFI value, initial degradation temperature and glass transition temperature at 0.8208 g/10 min, 322.63°C and 130°C respectively. The fiber was well dispersed in the matrix and shown good adhesion to the ABS. The addition of treated fiber contribute to a reduction in the MFI, improved the thermal stability of the composites and typical effects of Tg of the composite compare to pure ABS. Research limitations/implications: The results suggest the need to continue the study in order to further analyse higher kenaf loading and shed more light on the properties of the composites to improve understanding of kenaf/ABS composites. Originality/value: Obtained results are a solution to alternative of synthetic fibers, which may contribute to the sustainable development of composites materials industry through the utilization of kenaf fiber with ABS matrix.
EN
Thanks to dyeing of polymers, the possibilities of their use are constantly increasing. It is equally important to use additives that will have several functions. A perfect example is titanium dioxide used as an optical brightener and a flame retardant at the same time. Mostly it is used in the form of a powder. However, there are no studies where TiO2 is used as a colourbatch based on the different polymer matrix. The aim of the work was to investigate the effect of titanium white in the form of colourbatch on the flammability and selected properties of mouldings produced in various processing conditions. Colourbatch based on PS matrix, was used in the research. The variable processing parameters were: injection temperature Tw, volume flow rate Vw, residence time and the addition of a colourbatch. On the basis of the measurements, it was found that the processing conditions and the addition of the colourbatch have low effect on the hardness of the mouldings, which was in the range from 75.59° Sh D (Shore type D) to 81.95° Sh D. It was also noted that the addition of colourbatch with TiO2 and increasing injection temperature reduces impact strength even by several dozen percent. Moreover, it was found that use of TiO2 causes a delay in the ignitability of the samples in selected cases. It is difficult to determine whether the variable processing conditions or the addition of TiO2 on the PS matrix have a greater impact on the ignitability of the moulded parts.
EN
In this study, spin welding was used to join 3D-printed (3dp) and solid acrylonitrile-butadiene-styrene (ABS) rods. The fused filament fabrication method was utilized to make the 3dp ABS rods. These rods had a diameter of 12.5 mm and internal fill percentages of 50, 75, and 100. At three different spindle speeds, 710, 1000, and 1400 rpm, two distinct joints were created: 3dp/3dp and 3dp/solid joints. These weld joints' tensile characteristics were investigated. The fracture section of the joints was analyzed employing field-emission scanning electron microscopy, and the causes for the fracture of the joints were explored. Furthermore, the effects of the fill percentage and spindle speed on the joint’s tensile strength were studied using analysis of variance (ANOVA). Moreover, functional predictive equations for estimating weld strength were established. According to the results, the joints typically failed due to brittle fracture in the 3dp component of the weld joints. Furthermore, it was found that increasing the fill percentage and spindle speed enhanced the tensile strength of the weld joints. Moreover, 3dp/solid joints were stronger than 3dp/3dp joints.
EN
The manufacturing of machine parts with additive methods (AM) is of significant importance in modern industry. The development of 3D printers and all 3D printing technology is impressive. The ability to make parts quickly and relatively cheaply with AM gives excellent opportunities in terms of e.g., shortening the production preparation time. Proper selection of printing parameters allows for a significant reduction of printing time and production costs. Unfortunately, this has different consequences. Due to the course of the printing process and the parameters that can be set, the same product produced with different parameters has different mechanical properties - mainly different strength. This paper presents the impact of 3D printing parameters on the strength of manufactured parts. Strength tests were carried out on samples made in accordance with DIN EN ISO 527-1:2019. The samples were printed in technology FDM from three different materials, i.e. PLA (completely biodegradable), PETG (recycled material), and Smart ABS (material with minimal shrinkage). The tested samples were made in three levels of print filling - 10%, 30%, and 60% and with different types of filling - line, mesh, and honeycomb. A series of static tensile tests were carried out to determine the strength of the samples produced with different printing parameters. Thanks to the obtained test results, it is possible to select the optimal printing parameters depending on the forecast load of the manufactured parts.
EN
Increased interest in fused deposition modeling (FDM) resulting, for example, from its use in the production of utility models determines the undertaking of research on mechanical and rheological properties of materials. Mechanical and rheological properties of models made of materials used in FDM technology depend on technological parameters. In this paper, the effect of 0° and 90° print orientation on stress relaxation was analyzed. Additionally, the usefulness of the rheological model to describe the relaxation curve was evaluated. Stress relaxation tests were performed by tensile testing. The five-parameter Maxwell-Wiechert model was used to describe stress relaxation. The tests showed little effect of print orientation on the rheological parameters of the five-parameter model. The Maxwell-Wiechert model showed a very good approximation to the stress relaxation curves.
PL
Wzrost zainteresowania technologią osadzania topionego materiału (FDM), wynikający m.in. z zastosowania jej do produkcji modeli użytkowych, wymusza podjęcie badań nad właściwościami mechanicznymi w tym reologicznymi materiałów. Właściwości mechaniczne (i reologiczne) modeli wytwarzanych z materiałów stosowanych w technologii FDM zależą od parametrów technologicznych. W prezentowanym artykule poddano analizie wpływ orientacji wydruku 0° i 90° na relaksację naprężeń. Dodatkowo oceniono przydatność modelu reologicznego do opisu krzywej relaksacji. Testy relaksacji naprężeń wykonano poprzez próbę rozciągania. Do opisu relaksacji naprężeń zastosowano pięcioparametrowy model Maxwella-Wiecherta. Badania wykazały niewielki wpływ orientacji wydruku na parametry reologiczne modelu pięcioparametrowego. Model Maxwella-Wiecherta wykazał bardzo dobrą aproksymację do krzywych relaksacji naprężeń.
EN
Purpose: The purpose on this article is to study the failure of FDM printed ABS by exhibiting an exhaustive crack growth analysis mainly based on raster angle parameter. Design/methodology/approach: Two approaches have been developed in this study; On one hand, mechanical experiments were carried out to determine the critical stress intensity factor KIC. On the other hand, numerical analysis was used to predict the paths within the part as well as the crack propagation. Findings: This work has clearly shown the effect of raster angle on the damage mechanism of the ABS printed by FDM. Indeed, for the combination 1 (0°/90°), the structure presents an important stiffness and a high degree of stress distribution symmetry with respect to the notch. Moreover, the crack propagation is regular and straight, and the damage surfaces are on the same plane. However, for the combination 2 (-45°/45°), the structure is less resistant with an asymmetrical stress distribution according to two different planes. Research limitations/implications: In order to present an exhaustive study, we focused on the effect of two raster angles (including 0°/90°, -45°/45°) on the ABS crack propagation, additively manufactured. This study is still in progress for other raster angles, and will be developed from a design of experiments (DoE) design that incorporates all relevant factors. To highlight more the cracking mechanisms, microscopic observations will be developed in more depth. Practical implications: Our analysis can be used as a decision aid in the design of FDM parts. Indeed, we can choose the raster angle that would ensure the desired crack propagation resistance for a functional part. Originality/value: In this article, we have analyzed the mechanism of damage and crack propagation. This topic represents a new orientation for many research papers. For our study, we accompanied our experimental approach with an original numerical approach. In this numerical approach, we were able to mesh distinctly raster by raster for all layers.
EN
The paper presents the result of tribological test of ABS and steel samples sliding under dry friction. Polymeric samples were manufactured of ABS material using FDM technology. Testing was carried out in unidirectional sliding in a ring-on-flat contact in a PT-3 tribometer. The scope of tested parameters included volumetric and mass wear, the friction coefficient, and polymeric specimen temperature. Polymeric specimens used in the study were manufactured at various settings of the 3D printing process such as the orientation of the specimen in print with respect to the printer building tray and the thickness of a single layer of the deposited material. Comparisons of the impact of these parameters on tribological performance of the sliding contact were analysed.
PL
Przedstawiono wyniki badań tribologicznych pary ABS – stal w warunkach tarcia suchego. Polimerowa próbka została wykonana z materiału ABS przy użyciu metody FDM. Testy jednokierunkowego tarcia w układzie pierścień – tarcza przeprowadzono na Tribometrze PT-3. Analizowanymi parametrami były zużycie masowe i objętościowe, współczynnik tarcia oraz temperatura próbki polimerowej. Próbki polimerowe zostały wyprodukowane przy różnych parametrach procesu druku 3D, takich jak: orientacja próbki w stosunku do platformy drukarki oraz grubość drukowanej warstwy. Przeprowadzono szczegółową analizę wpływu tych parametrów na charakterystyki tribologiczne badanego skojarzenia ślizgowego.
EN
In the recent years, additive manufacturing became an interesting topic in many fields due to the ease of manufacturing complex objects. However, it is impossible to determine the mechanical properties of any additive manufacturing parts without testing them. In this work, the mechanical properties with focus on ultimate tensile strength and modulus of elasticity of 3D printed acrylonitrile butadiene styrene (ABS) specimens were investigated. The tensile tests were carried using Zwick Z005 loading machine with a capacity of 5KN according to the American Society for Testing and Materials (ASTM) D638 standard test methods for tensile properties of plastics. The aim of this study is to investigate the influence of printing direction on the mechanical properties of the printed specimens. Thus, for each printing direction ( and ), five specimens were printed. Tensile testing of the 3D printed ABS specimens showed that the printing direction made the strongest specimen at an ultimate tensile strength of 22 MPa while at printing direction it showed 12 MPa. No influence on the modulus of elasticity was noticed. The experimental results are presented in the manuscript.
EN
The aim of the conducted research was to examine the possibility of using chemical and physical methods of surface treatment of elements printed on a 3D printer. Elements were printed from polylactide (PLA) and acrylonitrile-butadiene-styrene (ABS) – materials most commonly used in fused filament fabrication (FFF) technology. Roughness measurements were made to assess the quality of individual methods. The best surface smoothness results were obtained during abrasive paper processing and after applying epoxy resin. The intended effect was also obtained after processing samples from PLA in chloroform fumes, and ABS samples in acetone vapors.
PL
Zbadano możliwości wykorzystania chemicznych i fizycznych metod obróbki powierzchniowej elementów wydrukowanych za pomocą drukarki 3D. Elementy wytworzono z polilaktydu (PLA) i kopolimeru akrylonitrylo-butadieno-styrenowego (ABS) – materiałów najpowszechniej stosowanych w technologii Fused Filament Fabrication (FFF). Jakość wykonania przy użyciu poszczególnych metod oceniano na podstawie chropowatości powierzchni wytworzonych elementów. Najlepszą gładkość powierzchni uzyskano w wyniku obróbki wydrukowanych elementów papierami ściernymi i nałożeniu żywicy epoksydowej. Zamierzony efekt uzyskano też w wyniku obróbki próbek z PLA w oparach chloroformu, a próbek z ABS w oparach acetonu.
EN
3D printing technology is currently used in various fields. Precision is also becoming more important as the usage of the 3D printing increases. However, the precision of the 3D printing is still low due to limitations of manufacturing methods. Especially, the surface roughness and quality are inconsistent. While the post-treatment is necessary, there are no systematic post-treatment methods. Thus, using the laser for the post-treatment of 3D printing would be a good option because it has many advantages for precision engineering. To be used for the post-treatment process, it is essential to understand the interaction characteristics between the laser and the 3D printing materials. Therefore, this study uses an UV pulsed laser and the acrylonitrile butadiene styrene (ABS), which is the most popular material for 3D printing, to understand the interaction characteristics. Furthermore, the effect of surface roughness on the interaction characteristics is also studied. The ABS specimens are prepared by an acetone fumigation technique and CNC milling. The laser is applied by varing laser pulse energy (50–340 μJ) on the ABS specimens. As the surface roughness decreases, it is confirmed that laser and ABS interaction have a certain pattern. For the specimen prepared by the acetone fumigation technique, Heat Affected Zone decreases with decreasing the laser pulse energy. The specimen prepared by end milling requires higher laser ablation threshold.
PL
Z wykorzystaniem metody cyfrowej korelacji obrazu (DIC) przeprowadzono pomiary odkształceń 3D koła podatnego zębatej przekładni falowej. Badania wykonano przy użyciu modeli fizycznych wytworzonych z zastosowaniem druku 3D z kopolimeru ABS, zapewniającego wystarczającą nośność i sztywność modelu. Uzyskane w badaniach stanowiskowych wartości odkształceń koła podatnego porównano z wynikami obliczeń przeprowadzonych z zastosowaniem metody elementów skończonych (MES). Wykazano dużą zbieżność otrzymanych wyników, jednak odkształcenia zmierzone na modelu rzeczywistym charakteryzują się większą nieregularnością niż odpowiadające im rozwiązania uzyskane metodą numeryczną. Wyniki otrzymane w pomiarach optycznych wskazują na zasadność stosowania w badaniach stanowiskowych prototypów przekładni zębatych modeli fizycznych wykonanych z tworzyw polimerowych z wykorzystaniem technologii szybkiego prototypowania.
EN
In the study, measurements of 3D deformations of the flexspline in harmonic drive were performed by applying a digital image correlation (DIC) method. The tests were carried out with the use of physical 3D printed models made of ABS copolymer (acrylonitrile-butadiene-styrene), which ensured sufficient capacity andrigidity of the structures. The findings related to deformations in flexspline, obtained through bench testing, were compared to the results of calculations conducted using the finite element method (FEM). Significant convergence in the findings obtained using the two methods was shown, yet deformations measured in the real-life model were characterized by greater irregularity compared to the corresponding solutions obtained with the numerical method. The results obtained through optical measurement confirm that physical models made of plastics, built using rapid prototyping technology, can justifiably be appliedin bench testing of prototype gear transmissions.
EN
The influence of operating conditions on physical and mechanical properties of tooth surface in the flexspline of a harmonic drive was investigated. 3D printed test models were made from poly(acrylonitrile--co-butadiene-co-styrene) (ABS) copolymer and from poly(lactic acid) (PLA) and subjected to the accelerated UV aging test and to bench tests. Measurements of hardness, Vicat softening point and atomic force microscopy (AFM) analysis were performed in order to determine the properties of the teeth surface in the gear wheels. Furthermore, the degree of degradation of the plastics was determined with IR spectroscopy. It was found, that the ambient conditions and exploitation of harmonic drives do not affect the value of softening point and hardness. On the other hand, the AFM analysis indicated that the sides of teeth were smoother as a result of their cooperation. The values of Ra parameter in the areas examined decreased from 110.0 to 54.6 nm and from 23.9 to 17.0 nm for the gear wheels made of ABS and PLA, respectively. Furthermore, the Derjaguin--Muller-Toporov modulus (DMT) of surfaces was also decreased from 10.0 to 3.0 GPa and from 4.5 to 2.2 GPa in the gear wheels made of ABS and PLA, respectively. The AFM imaging provide evidence for destructive effects of UV radiation and elevated humidity, confirmed by IR spectroscopy.
PL
Badano wpływ warunków eksploatacyjnych kół podatnych zębatej przekładni falowej na właściwości fizyczne oraz mechaniczne powierzchni zębów. Zzastosowaniem druku 3D z kopolimeru poli(akrylonitryl-co-butadien-co-styren)(ABS) oraz polilaktydu (PLA) wykonano modele badawcze, które poddano przyspieszonemu starzeniu promieniami UV, przeprowadzono też badania stanowiskowe. Właściwości zębów otrzymanych kół zębatych charakteryzowano na podstawie twardości i temperatury mięknienia Vicata, analizy powierzchni z wykorzystaniem mikroskopii sił atomowych (AFM) oraz stopnia degradacji tworzywa oznaczonego za pomocą spektroskopii IR. Stwierdzono, że warunki środowiskowe oraz eksploatacja zębatej przekładni falowej nie wpływają w istotnym stopniu na wartości temperatury Vicata i twardość powierzchni zębów. Analiza AFM wykazała, że w wyniku współpracy powierzchnia zębów się wygładziła. Średnia wartość chropowatości Ra kół zębatych wykonanych, odpowiednio, z ABS i PLA zmniejszyła się ze 110,0 do 54,6 nm oraz ze 23,9 do 17,0 nm. Ponadto, moduł Derjaguina-Mullera-Toporova (DMT) powierzchni elementów wykonanych z ABS oraz PLA również się zmniejszył, odpowiednio, z 10,0 do 3,0 GPa oraz z 4,5 do 2,2 GPa, co wskazuje na destrukcyjny wpływ promieniowania UV i podwyższonej wilgotności, potwierdzony metodą spektroskopii IR.
PL
Przedstawiono metodykę oraz wyniki oceny jakości części maszyn wytworzonych bezpośrednio z modelu numerycznego CAD 3D. Analizowano właściwości części otrzymanych za pomocą reprezentatywnych technik addytywnych opartych na przetwarzaniu polimerów oraz światłoczułych żywic. Cały proces wytwarzania części prowadzono zgodnie z konwencją Przemysł 4.0. Ocena dokładności odtwarzania modeli numerycznych CAD obejmowała zarówno jakość powierzchni zewnętrznych i objętość wytworzonych części, jak i stopień odwzorowania wymiarów.
EN
This paper presents the methodology and quality assessment results for machine parts produced directly from CAD 3D numerical model. The parts were produced using representative additive manufacturing technologies based on polymers and UV light-cured resins processing and their properties were analyzed. The whole process was conducted according to Industry 4.0 convention. The assessment of the reproduction accuracy of CAD 3D models covered the quality of external surfaces, volume of manufactured parts as well as dimension accuracy.
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.