Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  3D motion tracking
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The aim of this study was to quantify the accuracy of 3D trajectory reconstructions performed from two planar video recordings, using three different reconstruction methods. Additionally, the recordings were carried out using easily available equipment, like built-in cellphone cameras, making the methods suitable for low-cost applications. Methods: A setup for 3D motion tracking was constructed and used to acquire 2D video recordings subsequently used to reconstruct the 3D trajectories by 1) merging appropriate coordinates, 2) merging coordinates with proportional scaling, and 3) calculating the 3D position based on markers’ projections on the viewing plane. As experimental verification, two markers moving at a fixed distance of 98.9 cm were used to assess the consistency of results. Next, gait analysis in five volunteers was carried out to quantify the differences resulting from different reconstruction methods. Results: Quantitative evaluation of the investigated 3D trajectories reconstruction methods showed significant differences between those methods, with the worst reconstruction approach resulting in a maximum error of 50% (standard deviation 13%), while the best resulting in a maximum error of 1% (standard deviation 0.44%). The gait analysis results showed differences in mean angles obtained with each reconstruction method reaching only 2°, which can be attributed to the limited measurement volume. Conclusions: Reconstructing 3D trajectory from 2D views without accounting for the “perspective error” results in significant reconstruction errors. The third method described in this study enables a significant reduction of this issue. Combined with the proposed setup, it provides a functional, low-cost gait analysis system.
EN
A method for performing 3D motion tracking of the shoulder joint with respect to the thorax, using MARG sensors and a data fusion algorithm, is proposed. Two tests were done: 1) qualitative and quantitative analysis of the response of the sensors, static position and during motion, with and without the proposed data fusion algorithm; 2) motion tracking of the shoulder joint with the upper arm, the thorax, and the shoulder joint respect to the thorax. Qualitative analysis of experimental results showed that despite slight variations regarding the evaluated motion, these variations did not have repercussions on the estimated orientation. Quantitative analysis showed that the estimated orientation did not exhibit significant variations, in five minutes, such as drift errors (about 0.18 in static position and less than 1.88 during motion), variations due to noise or magnetic disturbances (RMSE less than 0.048 static position and less than 18 during motion); no singularity problems were reported. The main contributions of this research are a multisensor data fusion algorithm, which combines the complementary properties of gyroscopes, accelerometers, and magnetometers in order to estimate the 3D orientation of two body segments separately and with respect to another body segment considering the spatial relationship between them; and a method for performing 3D motion tracking of two body segments, based on the estimation of their orientation, including motion compensation. The proposed method is applicable to monitoring devices based on IMU/MARG sensors; the performance was evaluated using a customized motion analysis system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.