Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  2D forward modelling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study evaluates the efficacy of GECO gravity data for geophysical studies, mapping structural and tectonic features and their impact on gravity signatures in the study area. Computed correlation coefficient (96-98%), root-mean-square error (5.1-5.3 mGal), and standard deviation (3.9-4.2 mGal) between the GECO model-derived and ship-borne free-air gravity reveal the efficacy of the GECO gravity data for the geophysical studies in the region. A total horizontal derivative approach was used in order to enhance the residual and regional responses of the Bouguer gravity anomaly. The shorter-wavelength lineaments originated from subsurface mass heterogeneities were found trending in the northwest direction, subsequently east, north-northeast and east-northeast directions. In contrast, the longer-wavelength lineaments originating from deep-seated mass heterogeneities dominated in the east-northeast direction, followed by north-northeast and northwest directions. Lineaments occurring at shallower depths are associated with sedimentary/basement columns and could be utilised in basin demarcation for hydrocarbon exploration. In contrast, deep-seated lineaments originated due to deformities at the crust-mantle boundary or in the mantle and could be used in the region’s seismicity analysis. Spectral analysis and 2D forward modelling results indicate sediment thickness of ~ 2.0-6.0 km, basement thickness of ~ 6-14 km, and Moho depth of ~ 10-18 km. Delineated lineaments and computed basement and Moho depths were further validated with existing data. Anomalously high and low gravity features were interpreted based on Moho depth, basement thickness, and sediment thickness. This study concludes that anomalous gravity anomalies are mainly controlled by Moho topography despite the relatively thicker crust in the northern region. The crustal thickness mainly controls the southern latitude’s gravity signatures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.