Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  2017A aluminium alloy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451) aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf) as well as characteristics of cyclic material strain σa=f(N) under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.
PL
W pracy badano mikrostrukturę zgrzein stopów aluminium 2017A i 7075 wykonanych metodą tarciową z mieszaniem materiałów (FSW). Zgrzeiny były pozbawione wad i niezgodności spawalnicze. Mikrostruktura połączeń była różna dla różnych konfiguracji łączonych materiałów, tzn. zależała od tego, który ze stopów znajdował się po stronie natarcia, a który po stronie spływu. W obu przypadkach mikrostruktura spoiny jest zbudowana z naprzemiennych pasm obu mieszanych materiałów. Mikrostruktura tych pasm była różna: pasma stopu 7075 charakteryzowały się mniejszym ziarnem i większą ilością wydzieleń w przeciwieństwie do pasm stopu 2017A. W środku jądra dominował materiał, który znajdował się po stronie natarcia. Profile zmian twardości na przekroju poprzecznym połączeń wykonane wzdłuż linii w środku grubości złącza wykazywały różnice w obszarze jądra zgrzein w zależności od konfiguracji złącza. Profile twardości miały kształt litery W, który jest charakterystyczny dla stopów aluminium umacnianych wydzieleniowo. Profil twardości dla konfiguracji 2017A–7075 był symetryczny względem środka zgrzeiny, a profil dla konfiguracji odwrotnej był przesunięty w kierunku strony natarcia. Granica plastyczności i wytrzymałość złącza była większa, gdy stop miększy (2017A) znajdował się po stronie natarcia.
EN
The paper deals with an investigation of dissimilar friction stir welding of 2017A and 7075 aluminium alloys. The produced welds were free from cracks and welding discontinuities. The weld microstructure was unlike in nature for different configuration of welded alloys, i.e. it depended on the material that was placed on advancing and retreating sides. In both configurations the microstructure exhibited banded structure consisted of alternating welded alloys. The microstructure of particular bands was different: bands of the 7075 alloy exhibited smaller grain size and higher amount of second phase particles comparing to the bands of 2017A alloy. The material that was placed on the advancing side dominated in the centre of the weld nugget. The hardness profiles across different zones on the transverse section taken along a line in the weld mid-thickness showed substantial differences within the weld nugget depending on the weld configuration. In both cases the hardness exhibited a W-shaped profile typical for heat treated aluminium alloys. The profile for the configuration 2017A–7075 was symmetrical in relation to the weld center while the profile for the opposite configuration was shifted toward the advancing side. The yield and tensile strengths were higher when the softer material (2017A) was located on the advancing side.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.