A set S of vertices in a graph G = (V,E) is a 2-dominating set if every vertex of V \ S is adjacent to at least two vertices of S. The 2-domination number of a graph G, denoted by γ2(G), is the minimum size of a 2-dominating set of G. The 2-domination subdivision number sdγ2 (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the 2-domination number. The authors have recently proved that for any tree T of order at least 3, 1 ≤ sdγ2 (T ) ≤ 2. In this paper we provide a constructive characterization of the trees whose 2-domination subdivision number is 2.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.