Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  świder PDC
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
While the weight on bit (WOB) and rotary speed (RPM) are perhaps the most important drilling parameters affecting the rate of penetration, limited information are available about the fundamental mechanisms of rock destruction and the effect of cutting speed and the depth of cut during the cutting process. Experiments were carried out in a high-pressure facility with a 13 mm single PDC cutter to cut Carthage Marble and Indiana Limestone samples with depths of cut in the range of 0.02-0.12 inch and rotary speeds from 30 to 180 RPM at atmospheric and pressurized conditions. Our previous experimentations showed that an increase in the confining pressure as small as 150 psi could significantly increase the Mechanical Specific Energy (MSE) of the cutting process and reduce the efficiency by half. Recently performed atmospheric and pressurized single cutter tests, showed that a minimum depth of cut was required to efficiently drill the rock samples. MSE required to cut the rock, reached a minimum at depths of cut greater than 0.08 inches for both Indiana Limestone and Carthage Marble samples. Most promising were the results that showed a decrease in MSE at high rotational speeds (RPM>100) and atmospheric pressure, possibly indicating a change in rock failure mechanism. A mathematical model was derived from the balance of forces acting at the PDC cutter that constitutes a single linear relation between the cutting force and the normal force. The characteristic line acts as an indication of bit-rock interaction and can be used to detect the formation and cutter dullness. The model was verified using the experimental data from the single cutter tests. Such observations and analysis provide useful insights into the physics of cutter-rock interaction and are valuable to the improvements of drilling practices selection (WOB, rotary speed, etc) and the rates of penetration.
PL
O ile nacisk na świder (WOB) i prędkość obrotowa (RPM) są prawdopodobnie najistotniejszymi parametrami wiertniczymi mającymi wpływ na prędkość wiercenia, to niewiele jest informacji na temat podstawowych mechanizmów niszczenia skał i wpływu prędkości i głębokości zwiercania w procesie wiercenia. Przeprowadzono wysokociśnieniowe badania na 13 mm pojedynczym ostrzu PDC do cięcia próbek marmuru kartagińskiego i wapnia z Indiany na głębokość 0,02-0,12 cala przy prędkości obrotowej od 30 do 180 RPM w warunkach atmosferycznego i podwyższonego ciśnienia. Poprzednie eksperymenty wykazały, że nawet tak niewielki wzrost ciśnienia otaczającego jak 150 psi mógł istotnie zwiększyć energię mechaniczną procesu cięcia kosztem jego wydajności. Przeprowadzone niedawno testy na narzędziach z pojedynczym ostrzem w warunkach atmosferycznego i podwyższonego ciśnienia wykazały, że do skutecznego cięcia próbek skał konieczna była minimalna głębokość cięcia. Mechaniczna energia konieczna do przecięcia skały osiągnęła minimum dla głębokości cięcia większej niż 0,08 cala zarówno w przypadku próbek marmuru kartagińskiego jaki i wapnia z Indiany. Najbardziej obiecujące były wyniki, które charakteryzowały się spadkiem mechanicznej energii właściwej przy wysokich wartościach prędkości obrotowych (RPM>100) oraz ciśnienia atmosferycznego, prawdopodobnie wskazując na zmianę mechanizmu niszczenia skał. Z równowagi sił działających na ostrze PDC wyprowadzono model matematyczny będący zależnością liniową między siłami tnącymi a siłą normalną. Linia ta jest obrazem współdziałania koronki i świdra i można ją wykorzystać do określenia formacji i stępienia narzędzia. Model został zweryfikowany na podstawie wyników doświadczeń na pojedynczych ostrzach. Wyniki obserwacji i analiz dają wgląd w fizykę współoddziaływania ostra i skały stanowią cenną podstawę do lepszego doboru metod wiercenia (WOB, prędkość obrotowa, itd.) oraz zwiększenia postępu wiercenia.
PL
Narzędzia PDC odznaczają się wysokimi postępami wiercenia i osiąganymi przewiertami. Stosowanie tych narzędzi jest efektywne i przyczynia się do zwiększania prędkości wiercenia, a co za tym idzie, obniżenia kosztów wiercenia. Właściwe wyznaczenie optymalnych parametrów technologii wiercenia jest związane z procesem optymalizacji. Aby przeprowadzić taki proces, niezbędne jest zidentyfikowanie matematycznego modelu wiercenia danym narzędziami w odpowiednim interwale geologicznym. Artykuł prezentuje wyznaczenie matematycznego modelu wiercenia narzędziami PDC dla zapadliska przedkarpackiego.
EN
PDC tools have high drilling advancement and footage. These tools are efficient and accelerate the drilling rate, thus lowering the cost of drilling. Proper determining of optimal parameters of drilling technology is related with the optimization process. For doing so, it is necessary to identify a mathematical model of drilling with given tools in a respective geologic interval. The mathematical model of drilling with PDC tools for the Carpathian Foredeep is presented in the paper.
3
Content available Modelling of PDC drill bit whirling
EN
At this work it was made the attempt to explain the process of PDC drill bit whirling as an integral part of drilling in real conditions. It was shown that the causes of PDC whirling are not only the rock mass heterogeneity, but drill bit mass misbalance too and it is impossible to obtain absolutely stable drilling system. PDC drill bit previous models were based on the assumption all cutting forces are stable and that PDC drill bit oscillation is self appearable or stochastic. Based on the theory of probability it was defined the value of cutting forces on every PDC cutter and generalized drill face reaction and it was drill bit oscillation and whirling were analyzed.
PL
W artykule podjęto próbę wyjaśnienia procesu wirowania świdra PDC jako integralnej części rzeczywistych warunków wiercenia. Wykazano, że przyczyną powstawania ruchu wirowego jest nie tylko niejednorodność górotworu, ale również brak wyważenia świdra i ogólna niemożność stworzenia całkowicie stabilnego układu wiertniczego. Poprzednie modele świdra były oparte na założeniu, że wszystkie siły tnące są stabilne i że oscylacje świdra same się pojawiają lub są stochastyczne. Opierając się na teorii prawdopodobieństwa, określono wartość sił tnących dla każdego ostrza i uogólniono reakcję czoła świdra. Następnie przeanalizowano oscylacje świdra i zjawiska wirowania.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.