Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study, the effect of medium saline water on the synergistic interaction between diesel and Triton X-100 in the flotation of oxidized coal was investigated. The results showed that the flotation yield of oxidized coal in saline water was higher than that in de-ionized (DI) water due to the promotion of diesel adsorption, which was attributed to the screening of electrostatic repulsion between diesel droplets and coal particles in saline water. Meanwhile, the flotation of oxidized coal could be significantly improved when Triton X-100 was added with diesel as a composite collector, and less Triton X-100 was required in saline water than that in DI water to achieve the same true flotation yield, indicating that saline water could increase the effectiveness of Triton X-100 in improving oxidized coal flotation. A mechanism study revealed that Triton X-100 was able to promote diesel adsorption on oxidized coal through emulsification, thus increasing the surface hydrophobicity of oxidized coal through hydrogen bonding between the headgroups of Triton X-100 and the oxygenated groups on coal surfaces. The non-ionic characteristic of Triton X-100 ensured its capability of enhancing oxidized coal flotation in both DI water and saline water.
EN
With the development of oil and gas exploration, the conventional seismic migration imaging technology based on the isotropic assumption no longer meets our current requirements for high-resolution images. Migration in anisotropic media has become an essential requirement for oil and gas exploration. Marine seismic exploration has gradually entered the wide azimuth and high-density seismic data acquisition stage. However, even for current large high-performance computer clusters, it is still very difcult to implement pre-stack depth migration based on shot gathers. Thus, we present a double-square-root (DSR) equation based on three-dimensional (3D) pre-stack depth migration in midpoint-ofset domain for a wide-azimuth dataset in transversely isotropic media with a vertical symmetry axis (VTI media). Considering VTI media, the DSR migra tion requires extensive memory and computation; we adopted the phase-shift plus interpolation approach to improve the computational efciency. Then, we extract the angle-domain common-image gathers (ADCIGs) during DSR migration. For real large-scale seismic data, we designed an efective parallel implementation of 3D DSR migration with ADCIGs outputs. Finally, we applied the proposed angle-domain VTI DSR migration on wide-azimuth SEG/EAGE salt dome-based data and real data from the China South Sea. Numerical and practical data illustrate the efectiveness of the proposed method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.