Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main objective of the research is to assess the influence of the spark plug electrodes geometry on the structure of the electric arc. This issue is increasingly important in modern gas-fueled engines with lean and stratified air-gas mixtures. To explain the influence of electrode geometry on selected spark discharge indicators, optical tests were conducted, and the parameters of the test history, together with the movies of the discharging process, were recorded and analyzed. The tests were carried out comparatively for two types of spark plugs on the test stand: conventional spark plug and spark plug with a flat ground electrode. It has been found that using flat plug electrodes allows a larger spark area covered by the electric arc without losing the intensity of radiation. More, using an unconventional spark plug results in a shorter discharge time relative to the conventional spark plug, while the geometry of the conventional spark plug allows for maintaining a stable electric arc with a minimum tendency for creeping.
2
Content available Reverse engineering of research engine cylinder-head
EN
The pursuit of increasing the efficiency of internal combustion engines is an ongoing engineering task that requires numerous research efforts. New concepts of injection or combustion systems require preliminary investigation work using research engines. These engines, usually single-cylinder, make it possible to isolate a single variable in a complex combustion mixture preparation process, thus enabling analysis of the changes being made. However, these engines are relatively expensive and their designs are offered by a limited number of manufacturers. The authors of this paper have successfully undertaken the engineering task of modifying an existing research engine cylinder head in such a way as to implement an electronically controlled variable valve timing system of the intake system. The process of reverse engineering, together with design assumptions that finally contributed to the construction of the assumed solution has been described in this paper.
EN
Gas engines are a viable source of propulsion due to the ecological indicators of gas fuels and the large amount of the needed natural resources. Combustion of lean homogeneous gas mixtures allows achieving higher thermal efficiency values, which is a key factor in current engine development trends. Using the spark-jet ignition system (also called as Turbulent Jet Ignition or two-stage combustion) significantly improves the efficiency and stability of the combustion process, especially in the part-load operation on lean or very lean mixtures. This paper presents the impact of using two different fuel injection methods: Port Fuel Injection or mixer on the operation stability of a gas engine designed for LDVs. Comparative studies of two different mixture preparation systems were carried out on a single-cylinder AVL 5804 test engine. By recording the cylinder pressure for a significant number of engine cycles, it became possible to determine the repeatability of engine operation and to correlate the results with the mixture formation system and the air-fuel ratio. In the performed research the beneficial effect of the mixer system application on the engine operation stability in the part-load conditions was found.
EN
The increase in ignitability consist a main aim of implementation of the turbulent jet ignition (TJI) in relation to the combustion of diluted charges. Such an ignition system has been introduced to the lean-burn CNG engine in the scope of GasOn-Project (Gas Only Internal Combustion Engines). In this study the impact of TJI application on the main combustion indexes has been investigated using RCM and analyzed on the bases of the indicating and optical observations data. The images have been recorded using LaVision HSS5 camera and post-processed with Davis software. Second part of the study based on indicating measurements consist the analysis of combustion regarding the variation in the geometry of pre-chamber nozzles. It has been noted, that combustion with TJI indicates significantly bigger flame luminescence and simultaneously - faster flame front development, than the combustion initiated with conventional SI. The positive impact of nozzles angular position on engine operational data has been found in the static charge movement conditions, regarding the combustion stability.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.