Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Celem pracy jest charakterystyka cienkich warstw naniesionych na powierzchnię narzędzi wykonanych ze stali szybkotnącej metodami: RF PACVD oraz RF PACVD/MS. Warstwa azotowana wytworzona została za pomocą technologii RF PACVD z plazmy wyładowania częstotliwości radiowej, natomiast proces RF PACVD/MS zakłada syntezę warstwy diamentopodobnej w procesie rozpylania magnetronowego oraz dysocjacji węglowodorów w polu wysokiej częstotliwości. Morfologia powierzchni oraz grubość wytworzonych warstw została scharakteryzowana za pomocą skaningowej mikroskopii elektronowej (SEM) oraz mikroskopii świetlnej. Adhezję warstwy węglowej do stalowych podłoży określono za pomocą metody rysy. Przeprowadzone zostały pomiary twardości oraz właściwości tribologicznych. Współczynnik tarcia oraz odporność na ścieranie wyznaczone zostały metodą kulka-krążek z zastosowaniem kulki ceramicznej ZrO2, natomiast twardość zbadano techniką nanoindentacji. Uzyskane wyniki badań laboratoryjnych potwierdzają wysoki potencjał aplikacyjny zastosowanych technologii w obróbce drewna oraz materiałów drewnopodobnych.
EN
The main aim of work is the characteristics of layers deposited onto surfach of high speed cutting tools using RF PACVD and RF PACVD/MS methods. RF PACVD technology was used to synthesize nitrided layers using radio frequency plasma discharge, whereas RF PACVD/MS technology assumes the deposition of a-C:H/Ti gradient layers using the magnetron sputtering of Ti cathode and dissociation of hydrocarbons in high frequency electromagnetic field. Morphology and thickness of deposited layers was investigated using scanning electron microscopy (SEM) and light microscopy. Adhesion measurements of carbon layers was performed using the scratch test method. Tribological features of both types of layers were investigated with use of the ball-on-disc method where as the counterpart material ZrO2 ceramic ball was used. Hardness measurements were made using the nanoindentation method. Obtained laboratory investigation results prove the possibility of application of both technologies in wood and wood like materials machining industry.
EN
Present nanofiber technology is one of the most important objects in the recent research topics. Electrospinning is a unique technology that can produce non-woven fibrous materials with interesting characteristics such as diameters ranging from sub-micron to several nanometers, high surface to volume ratio, high porosity and small interfibrous pore size. Polymer nanofibres have great potential for technical applications in filtration, composites and electronics. Nanofibers are also of importance in many different applications as the drug delivery, biomaterials and tissue engineering. For these applications there is a great need for polymer nanofibers with well defined surface properties. In this field, plasma surface treatment has been applied in the textile industry for the modification of polymer nanofibers. In this study, chitosan nanofibers were prepared by modified electrospinning method called NanospiderTM and treated with plasma in the presence of methane gas. The surface characteristics of the nanofibers after plasma treatment were examined using contact angle measurements, SEM and XPS analysis.
3
Content available remote Potential applications of nanofiber textile covered by carbon coatings
EN
Purpose: Nanospider technology is modified electrospinning method for production nanofiber textile from polymer solutions. This material can be used as wound dressing and filter materials for example. Carbon coatings deposited onto surface of polymer nanofiber textiles are predicted to improve filtration effectivity of filters and bioactivity of wound dressings. Carbon coatings have been produced by Microwave Radio Frequency Plasma Assisted Chemical Vapor Deposition (MW/RF PACVD) method. Design/methodology/approach: Carbon coatings were deposited on polymer nanofiber textile by MW/RF PACVD method. Nanocomposite obtained in this way was characterized by the contact angle studies and by scanning electron microscope (SEM). Findings: Carbon coatings can be deposited on the polymer nanofibers by MW/RF PACVD method. Content of diamond phase in produced carbon coatings has been confirmed by wetability test. A SEM microscopic images have shown that the spaces between the nanofibers have not been closed by the material of the film. Research limitations/implications: MW/RF PACVD makes carbon coating synthesis possible in lower temperature, what is essential in case of applying the polymer substrate. Use of any other method than MW/RF PACVD for deposition of carbon coatings onto polymer nanofiber textile is not covered in this paper. Practical implications: Nanofiber textile produced by Nanospider is very good mechanical filter. Carbon onto surface of nanofibers can cause from this material active filter. Since this nanocomposite enables the transport of oxygen and exudate, simultaneously is impenetrable for bacteria or even viruses, it can be used for wound dressing. Originality/value: It is our belief that we are first to have deposited carbon coatings on nanofiber textile. We hope that in this way we have prepared very good material for filtration of air and for wound dressing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.